Horizons in Hematological Research

Brain Neoplasms and Coagulation—Lessons from Heterogeneity

Esterina D’Asti, Yi Fang, and Janusz Rak

Abstract

The coagulation system constitutes an important facet of the unique vascular microenvironment in which primary and metastatic brain tumors evolve and progress. While brain tumor cells express tissue factor (TF) and other effectors of the coagulation system (coagulome), their propensity to induce local and peripheral thrombosis is highly diverse, most dramatic in the case of glioblastoma multiforme (GBM), and less obvious in pediatric tumors. While the immediate medical needs often frame the discussion on current clinical challenges, the coagulation pathway may contribute to brain tumor progression through subtle, context-dependent, and non-coagulant effects such as induction of inflammation, angiogenesis, or by responding to iatrogenic insults (e.g. surgery). In this regard, the emerging molecular diversity of brain tumor suptypes (e.g. in glioma and medulloblastoma) highlights the link between oncogenic pathways and the tumor repertoire of coagulation system regulators (coagulome). This relationship may influence the mechanisms of spontaneous and therapeutically provoked tumor cell interactions with the coagulation system as a whole. Indeed, oncogenes (EGFR, MET) and tumor suppressors (PTEN, TP53) may alter the expression, activity, and vesicular release of tissue factor (TF), and cause other changes. Conversely, the coagulant microenvironment may also influence the molecular evolution of brain tumor cells through selective and instructive cues. We suggest that effective targeting of the coagulation system in brain tumors should be explored through molecular stratification, stage-specific analysis, and more personalized approaches including thromboprophylaxis and adjuvant treatment aimed at improvement of patient survival.

Rambam Maimonides Med J 2014;5(4):e0030