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ABSTRACT 

In Alzheimer’s disease (AD), premature demise of acetylcholine-producing neurons and the consequent 
decline of cholinergic transmission associate with the prominent cognitive impairments of affected in-
dividuals. However, the enzymatic activities of acetylcholinesterase (AChE) and butyrylcholinesterase 
(BChE) are altered rather late in the disease progress. This raised questions regarding the causal in-
volvement of AChE and BChE in AD. Importantly, single nucleotide polymorphisms (SNPs), alternative 
splicing, and alternate promoter usage generate complex expression of combinatorial cholinesterase 
(ChE) variants, which called for testing the roles of specific variants in AD pathogenesis. We found ac-
celerated amyloid fibril formation in engineered mice with enforced over-expression of the AChE-S 
splice variant which includes a helical C-terminus. In contrast, the AChE-R variant, which includes a 
naturally unfolded C-terminus, attenuated the oligomerization of amyloid fibrils and reduced amyloid 
plaque formation and toxicity. An extended N-terminus generated by an upstream promoter enhanced 
the damage caused by N-AChE-S, which in cell cultures induced caspases and GSK3 activation, tau hy-
perphosphorylation, and apoptosis. In the post-mortem AD brain, we found reduced levels of the neu-
roprotective AChE-R and increased levels of the neurotoxic N-AChE-S, suggesting bimodal contribution 
to AD progress. Finally, local unwinding of the α-helical C-terminal BChE peptide and loss of function 
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of the pivotal tryptophan at its position 541 impair amyloid fibril attenuation by the common BChE-K 
variant carrying the A539T substitution, in vitro. Together, our results point to causal yet diverse in-
volvement of the different ChEs in the early stages of AD pathogenesis. Harnessing the neuroprotective 
variants while reducing the levels of damaging ones may hence underlie the development of novel 
therapeutics. 

KEY WORDS: Acetylcholinesterase, Alzheimer’s disease, apoptosis, beta-amyloid,  butyrylcholinester-
ase 
 

 

Alzheimer’s disease (AD), the leading cause of 
dementia in the elderly today, is a neurodegen-
erative disorder with an urgent and unmet medi-
cal need.1–3 AD is characterized by several hall-
marks including increased levels of amyloid beta 
42 (Aβ42) and the consequent generation of toxic 
oligomers and plaques, intracellular accumula-
tion of neurofibrillary tangles composed of 
hyperphosphorylated tau protein, synaptic defi-
cits, and neuronal loss.1–3 The currently used cho-
linesterase inhibitor therapies mainly offer pallia-
tive relief, and a thorough understanding of the 
early stages of the disease is needed for successful 
future interventions. Interestingly, both acetyl-
cholinesterase (AChE) and butyrylcholinesterase 
(BChE) are localized in amyloid plaques, and ear-
ly reports showed that AChE is capable of facili-
tating Aβ fibril formation.4 However, AChE is not 
one but several enzymes generated by alternate 
promoter usage and alternative splicing (Figure 
1).5,6 At the C-terminus, skipping of exon 5 and 
inclusion of exon 6 generates the normally abun-
dant AChE-S variant which includes a helical C-
terminus7 and is attached as tetramers through a 
dedicated structural unit to the synaptic cleft.8 
Inclusion of in-frame intron 4 and exon 5 gen-
erates the stress-induced monomeric and soluble 
AChE-R variant with its naturally unfolded C-
terminal peptide.9 AChE has been attributed roles 
in apoptosome formation and apoptosis.10 How-
ever, it remained unclear if different variants par-
ticipate in this function similarly. Also, AChE is 
widely expressed in the healthy brain; it therefore 
remained unclear whether it plays similar role(s) 
in the apoptotic pathway in the healthy brain and 
in AD. Based on these arguments, we reasoned 
that differential expression of AChE variants may 
be causally involved in the pattern of neuronal 
death  seen  in AD.  To  address  the  specific func- 

 

 

tions of these variants in AD we first compared 
the effect of recombinant, highly purified AChE-S 
and AChE-R on amyloid β-sheet formation using 
thioflavin-T incorporation assay. While AChE-S 
facilitated the formation of β-sheets, AChE-R 
surprisingly inhibited oligomerization and β-
sheet formation. The neurotoxic amyloid peptides 
Aβ40 and Aβ42 were dose-dependently mod-
ulated by the two variants, and masking the C-
terminus of AChE-R using a specific antibody 
blocked this effect.11  

      Several neurotoxic Aβ oligomers have thus far 
been described,12,13 and while it is generally be-
lieved that soluble Aβ is the main toxic species in 
AD,2 insoluble amyloid plaques also induce dam-
age to dendrites and disrupt normal neuronal 
wiring.14 For these reasons the in-vivo effect of 
AChE-S and AChE-R was examined in the APPsw 
mouse model, carrying the amyloid precursor 
protein (APP) with the “Swedish” mutation lead-
ing to early-onset Alzheimer’s disease. Two mis-
sense mutations in APP result in these mice in 
increased Aβ42/40 ratio, amyloid plaque forma-
tion, synaptic deficits, and learning and memory 
impairments. To challenge the hypothesis that 
specific AChE variants could affect the progress of 
these neuropathology hall-marks, we crossed the 
APPsw mice with mice engineered to over-express 
either AChE-S or AChE-R. Similarly to the in-
vitro results, we found that AChE-S facilitated the 
formation of plaques.15 Mice co-expressing AChE-
S and APPsw showed more plaques, and these 
appeared earlier in the double-transgenic mice 
than in mice transgenic for APPsw alone. More-
over, APPsw/AChE-S mice showed memory im-
pairments that were tightly correlated with pla-
que burden.16 In contrast, AChE-R reduced the 
overall brain area covered with these aggregates.11 
Secondary outcomes of amyloid toxicity were also 
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modulated: AChE-R reduced gliosis and restored 
dendritic density. In parallel to the mouse studies, 
we further explored human brain tissues from AD 
patients and matched controls. Total AChE ex-
pression in the AD brain was reduced only to a 
minor extent, but AChE-R levels were drastically 
reduced to about 20% of control levels,11 support-
ing the notion that loss of this naturally rare va-
riant may be involved with amyloid plaque devel-
opment in the human brain as well. 

      In addition to the alternate C-terminus of 
AChE, changes in the composition of the N-
terminus are also important for the functions and 
properties of this enzyme. Several alternate pro-
moters in mouse and human AChE have been 
reported.9 Among these, of particular interest is 
an upstream promoter leading to an N-terminal 
extension via an in-frame translation start site. 
This N-terminal extension can be combined with 
either the AChE-S or AChE-R unique C-termini 
leading to four different variants (AChE-S, AChE-

R, N-AChE-S, and N-AChE-R). Transfection of 
primary cortical neurons and cell lines of other 
tissue origins with the four variants demonstrated 
that the N-AChE-S variant is the only one which 
induces apoptosis. Further, N-AChE-S levels are 
increased following thapsigargin treatment which 
induces apoptosis by increasing intracellular cal-
cium levels. Concomitant activation of caspases 3 
and 9 was observed following N-AChE-S transfec-
tion. Moreover, the apoptotic effect of N-AChE-S 
was abolished by small interfering RNA (siRNA) 
against AChE, cholinesterase inhibitors, apoptosis 
inhibitors, and by transfection of the anti-
apoptotic Bcl proteins.17,18 A key player in apopto-
sis and Alzheimer’s disease is glycogen synthase 
kinase 3 (GSK3).19,20 We therefore investigated 
whether N-AChE-S affects GSK3 activation. In-
deed, reduced levels of serine-phosphorylated 
inactive GSK3 were observed after N-AChE-S 
transfection. One substrate of GSK3 is the micro-
tubule-associated protein tau. As expected, N-

 

Figure 1. Genomic location and gene structure of BChE and AChE. Both enzymes encode many different vari-
ants, BChE due to multiple polymorphisms and AChE because of alternate promoter usage and 3’ alternative 
splicing. Noted are those single nucleotide polymorphisms in BChE which generate the two most frequent vari-
ants in Middle Eastern populations, the C-terminal A539T substitution in BChE-K and the N-terminal D70G 
mutation in “atypical” BChE which causes post-anesthetic depression and is linked to apnea.43 BChE-K retains 
approximately 70% of its hydrolytic activity due to inherent instability, whereas “atypical” BChE retains only 
25% of this activity. In AChE, alternate promoters generate N-terminally extended variants, and alternative 
splicing changes the C-terminus of the protein.39 
 

  



  Modified Cholinesterases in Alzheimer’s Disease 
           

 

Rambam Maimonides Medical Journal   4        October 2010 w Volume 1 w Issue 2 w e0014
  
  
 

AChE-S also induced tau hyperphosphorylation, 
and the expression pattern of these two proteins 
in the post-mortem cortex of AD patient donors 
was remarkably similar. Attempts to generate N-
AChE-S transgenic mice have thus far been un-
successful given that over-expression of N-AChE-
S is lethal, with almost no embryo passing the 
morula stage.18 Given that most AD mouse mod-
els used to date do not show neuronal death, a 
major hall-mark of AD, combining existing mod-
els with mild N-AChE-S over-expression may lead 
to a new and more relevant model. To delineate 
the mechanism(s) of N-AChE-S-induced apopto-
sis we hence searched for protein partners in vi-
tro and found that GSK3, the Aurora and cyclin-
G-dependent kinases (GAK), membrane integrin 
receptors and the death receptor FAS all interact 
with N-AChE-S.18 Therefore, N-AChE-S seems to 
be a key factor in apoptosis, especially in the AD-
related context of calcium dys-homeostasis and 
tau hyperphosphorylation.  

      Contrasting the many variants of AChE, there 
is no evidence that BChE transcripts undergo al-
ternative splicing or are generated from different 
promoters. However, the BChE gene is consider-
ably more susceptible to mutability than the 
AChE gene. Over 40 genomic variants have been 
described, with some of them having profound 
effects on the hydrolytic properties of this en-
zyme. Among these polymorphisms, the alanine-
to-threonine substitution at position 539 is the 
most frequent one, with allelic frequencies of 
0.13–0.21 (Figure 1). This variant, termed BChE-
K, is a long-debated risk factor for AD. While sev-
eral studies found that BChE-K confers high risk 
to develop AD,21 others have found no associa-
tion,22 or even found it to be protective.23 We 
therefore took a biochemical approach and com-
pared the influence of “usual” BChE (BChE-U) 
and BChE-K on amyloid oligomerization and tox-
icity. BChE-U was found to act similarly to AChE-
R and attenuated amyloid oligomerization.24,25 
This effect was mainly dependent on a tryptophan 
residue which disturbs an amphipathic α-helix at 
the C-terminus (Figure 2). The effect of BChE-K 
seems to be a complex one, with its reduced hy-
drolytic activity protecting cholinergic transmis-
sion, whereas its impaired C-terminal structure 
interferes with this protein’s capacity to attenuate 
amyloid fibril formation.26 Therefore, the com-
bined effect of BChE-K may depend on other fac-
tors modulating its activity, which could explain 
at least some of the controversy reported in the 
literature.27  

      The cholinesterases are not unique in the dif-
ferent features conferred by their modified N- and 
C-termini; rather, many other neurodegenera-
tion-related proteins show different and some-
times inverse features when their N- and/or C-
termini are modified, either by alternative splic-
ing or due to alternate promoter usage or single 
residue substitutions. Examples of functionally 
effective alternative splicing in the terminal re-
gions include presenilins 1 and 2,28,29 APP,30 the 
APP-binding protein Fe65,31 and neurexins and 
neuroligins.32 Examples of disease-associated sin-
gle nucleotide polymorphisms (SNPs) are also 
abundant in the termini of two genes that have 
recently been implicated in amyotrophic lateral 
sclerosis (ALS): numerous mutations in the C-
terminus of both TDP-43 and FUS, both involved 

  
Figure 2. Structural effects of alanine-to-tryptophan sub-
stitution in position 539 of BChE. Shown is molecular 
modeling of the helical C-terminal peptides of the “usual” 
(wild-type) BChE (gray) and the BChE-K variant (yellow), 
as these interact with the proline-rich Lamellipodin pep-
tide with which BChE is associated in the serum. Note that 
the A-to-T mutability, characteristic of the K variant, and 
which is schematically drawn below, induces a kink. This 
impairs protein-protein interactions of the BChE-K C-
terminal peptide, possibly by changing the positioning of 
the adjacent tryptophan – as we could experimentally 
validate by nuclear magnetic resonance measurements.26  

 



  Modified Cholinesterases in Alzheimer’s Disease 
           

 

Rambam Maimonides Medical Journal   5        October 2010 w Volume 1 w Issue 2 w e0014
  
  
 

in pre-mRNA processing and which generate in-
clusions in motor neurons, are reported in ALS 
pedigrees suggesting their causal involvement in  

the disease.33 Furthermore, usage of alternate 
promoters leading to inclusion of 5’ in-frame ex-
tension has been reported for example in the 
apoptosis regulator protein Bim in sympathetic 
neurons.34  

      Last, but not least, regulation of cholinesterase 
(ChE) levels by micro-RNA should be discussed. 
Over 40 different micro-RNAs are complementa-
ry to the 3’-untranslated region (UTR) of AChE 
mRNA, compared to 14 other micro-RNAs that 
are complementary to BChE’s 3’-UTR. Intriguing-
ly, those do not overlap each other, suggesting 
specificity of such regulation. Also, specific ChE-
targeted micro-RNAs show different evolutionary 
conservations and tissue distributions. We have 
recently shown that micro-RNA-132 arrests 
AChE-S mRNA translation in macrophages fol-
lowing inflammatory processes, thus retrieving 
homeostatic cholinergic signaling.35 Further stu-
dies will be required to explore the potential in-
volvement of this mechanism in other diseases 
(e.g. neurodegeneration).  

      Taken together, our data demonstrate that 
both N- and C-terminal modulations in cholines-
terases have profound roles in AD pathogenesis 
and that they all affect key features of AD includ-
ing amyloid oligomerization, amyloid toxicity, 
plaque formation, tau hyperphosphorylation, 
apoptosis, and learning and memory impairments 
(Figure 3). The fact that some cholinesterase va-
riants are protective against Aβ toxicity while oth-
ers facilitate such effects offers a new possibility 
for therapeutic intervention. For example, cholin-
esterase inhibitors have been shown to up-
regulate AChE-R levels by a feedback mechan-
ism.36,37 This may explain some of the beneficial 
effects attributed to such inhibitors.38 AChE-R is 
also increased in the brain following stress and 
inflammation,39-41 possibly as a neuroprotective 
attempt. Further, increasing the brain levels of 
the neuroprotective variants by other means, for 
example by preventing the massive degradation of 
AChE-R seen in the AD brain,11 may help to con-
trol Aβ toxicity. The selective knock-down of spe-
cific variants using siRNA may also support ef-
forts to specifically reduce the levels of cholin-
esterase variants that promote AD pathogenesis.42 

Terminally modified ChEs are hence naturally 
occurring modulators of amyloid toxicity that 
could be harnessed in the battle against this dis-
ease. 
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