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ABSTRACT 

This review describes some of the recent developments in imaging aspects of pain in the periphery. It is now 
possible to image nerves in the cornea non-invasively, to image receptor level expression and inflammatory 
processes in injured tissue, to image nerves and alterations in nerve properties, to image astrocyte and glial 
roles in neuroinflammatory processes, and to image pain conduction functionally in the trigeminal 
ganglion. These advances will ultimately allow us to describe the pain pathway, from injury site to 
behavioral consequence, in a quantitative manner. Such a development could lead to diagnostics 
determining the source of pain (peripheral or central), objective monitoring of treatment progression, and, 
hopefully, objective biomarkers of pain. 
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INTRODUCTION 

Early work in the fields of neuroanatomy, neuro-
physiology, and clinical observations has provided a 
robust description of pain pathways. These 
pathways can now be evaluated with imaging to 
contribute to a more objective view of pain, where 
both the sensory and emotional experience may be 
assessed in health and disease. This review describes 
some recent advances in imaging of pain and 
inflammation-related processes below the level of 
the brain, that is, at the level of 1) the periphery; 
2) the nerve; and 3) the nerve root. We discuss 
methods to measure neuroinflammation and future 
lines of inquiry linking peripheral markers to spine, 
brainstem, and brain functional imaging. An 
ultimate goal is a more mechanistic definition than 
the one currently offered by the International 
Association for the Study of Pain: “an unpleasant 
sensory and emotional experience associated with 
actual or potential tissue damage, or described in 
terms of such damage.”1 

IMAGING PERIPHERAL NEUROPATHY 

AND INFLAMMATION 

Identifying active inflammatory pathology may be 
critical for adequate treatment. Further, precise 
measurement of inflammation may allow assess-
ment of disease activity and assess the effect of 
therapeutic measures. Structural imaging methods 
such as computerized tomography (CT), magnetic 
resonance imaging (MRI), and ultrasound may 
detect large anatomical lesions and subtle swelling, 
but differentiating active disease from anatomical 
changes in healed tissue and/or normal variations is 
difficult. Two non-invasive imaging techniques, 
corneal confocal microscopy (CCM) and positron 
emission tomography (PET), may, however, provide 
insights into peripheral nerve function. 

Corneal Confocal Microscopy 

The cornea is a window into free nerve fiber 
endings.2 Burning neuropathic pain and small fiber 
sensory loss involving the limbs, trunk, and face is 
characterized by abnormal skin biopsies as non-
length-dependent small fiber neuropathy. A novel 
non-invasive technique to quantify small fiber 
pathology is corneal confocal microscopy (CCM). As 
the cornea contains C and A delta sensory fibers 
arising from branches of the trigeminal nerve, it 
offers a window for evaluating neuropathy in 
diabetic peripheral neuropathy,3 Crohn’s disease,4 

Sjögren’s syndrome,4 idiopathic neuropathy,4 and 
Fabry’s disease.5 Future studies relating CCM find-
ings to individual variations in pain and disability 
and central nervous system (CNS) function are 
warranted. 

Peripheral Positron Emission Tomography 

Although it is not currently possible to image 
nociceptors in vivo with PET ligands directly, the 
technique may still inform us on the functional state 
of the inflammatory milieu and levels of receptor 
expression/occupancy. Due to changes in blood 
flow, vascular permeability, metabolism, white 
blood cell influx, and changes in the local chemical 
environment, many PET ligands accumulate at sites 
of peripheral inflammation. 

Infection and inflammation may be visualized by 
scintigraphy and 67Gallium citrate, or autologous 
leukocytes labeled with indium-111 or technetium-
99m.6 By far the most commonly used PET ligands 
18F-fluorodeoxyglucose (FDG), thanks to its avail-
ability and its excellent properties in oncological 
imaging. It is a tracer for glucose metabolism, and 
its distribution is not specific to cancer cells but is 
also observed in inflammatory tissue, including 
macrophages, capillaries, and fibroblasts. FDG has 
been used to image inflammation processes and 
treatment monitoring in rheumatoid arthritis 
(Figure 1a),7–9 fever of undetermined origin (FUO), 
focal infection, musculoskeletal infections, sarcoid-
osis, and vasculitis.10 

We have found that the tracer 11C-D-deprenyl 
provides excellent delineation of peripheral inflam-
matory sites, a method that holds potential to eluci-
date the pathophysiological mechanism in chronic 
musculoskeletal pain disorders, including whiplash-
associated disorder (Figure 1b)11 and rheumatoid 
arthritis.12 The translocator protein (18 kDa) has 
also been targeted to image peripheral inflammation 
in the lung,13 arterial walls,14 and intra-plaque 
inflammation in carotid atherosclerosis.15 Other 
peripheral inflammation probes, such as 68Ga 
peptides targeting vascular adhesion protein 1, are 
being developed (Figure 1c).16 The use of 68Ga is 
especially interesting as the nuclide emits positrons 
in high yields, it is readily chelated, and it is 
available as a generator product rather than from a 
cyclotron.  

The neurokinin-1 (NK1) receptor antagonist 
tracer 11C-GR205171 used for CNS imaging was 
recently demonstrated to show elevated unilateral 
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uptake in chronic tennis elbow (Figure 1d).17 This 
finding suggests that NK1 receptors may be 
activated, or up-regulated in the peripheral, painful 
tissue of a chronic pain condition. The increased 
NK1 receptor availability is interpreted as part of 
ongoing neurogenic inflammation and may have 
correlation to the pathogenesis of chronic tennis 
elbow. 

IMAGING CENTRAL INFLAMMATION 

Glia are the most abundant cells in the nervous 
system, and recent research has changed the percep-
tion of glia from being just supportive cells of 
neurons to being dynamic partners participating in 

brain metabolism and communication between 
neurons in health and in chronic pain.18-21 

Astrocytes are the most abundant brain cell type 
in terms of their number and volume, and they 
constitute 40% to 50% of all glial cells. Astrocyte 
reaction has been demonstrated in peripheral nerve 
injury and in tissue inflammation models. 
Peripheral chronic nerve lesion is associated with 
breakdown of the blood–spinal cord barrier 
permeability and activation of astrocytes.22 Most 
animal studies have focused on the role of astrocyte 
activation at the spinal cord dorsal horn level, but 
alterations can occur at supraspinal areas, such as 
the rostral ventromedial medulla and in the 
forebrain.23 The enzyme monoamine oxidase 
(MAO)-B exists on the outer mitochondrial 
membrane, occurring predominantly in astrocytes.24 
When astrocytes become activated (as customarily 
defined by their greatly enhanced glial fibrillary 
acidic protein (GFAP) binding) they express high 
levels of MAO-B,25 thereby providing an indirect 
target for PET imaging. 

L-deprenyl (selegeline) is a selective irreversible 
MAO-B inhibitor that has been carbon-11-labeled, 
allowing for PET imaging of astrocyte activity.26 A 
deuterium substitution on the L-deprenyl molecule 
causes a significant reduction in the rate of trapping, 
thereby further enhancing the tracer’s sensitivity to 
subtle changes in MAO-B concentration.27 Thus far, 
studies using this deuterium-substituted deprenyl 
(DED) tracer have been performed to assess MAO-B 
function and astrocytosis in epilepsy,28 amyotrophic 
lateral sclerosis,29 Creutzfeldt–Jakob disease,30 and 
Alzheimer’s disease.31 No study to date has utilized 
MAO-B expression to image spinal cord or brain 
astrocyte involvement in human pain.  

Microglia are the resident macrophages of the 
brain and spinal cord and thus act as the first and 
main form of active immune defense in the central 
nervous system. Microglia rapidly activate in 
response to a variety of pathological conditions, 
including nerve damage and persistent pain.20 
Microglial activation is characterized by cellular 
responses including specific morphological changes, 
proliferation, increased or de novo expression of cell 
surface markers or receptors, and migration to the 
site of injury.32 Activated microglia express trans-
locator protein (TSPO), which has been observed in 
animal models of neuropathic pain both in the 
dorsal horns of the spinal cord,33 the spine,34 and in 
cortex.35 In human studies, increased TSPO 

 

Figure 1. Examples of PET Imaging of Peripheral Pain 

Mechanisms. 

A: 18F-FDG PET of the hand of a healthy subject and a 

patient with rheumatoid arthritis. Adapted from Beckers 

et al.9 

B: 11C-D-deprenyl PET/CT of a patient with whiplash-

associated disorder. Adapted from Linnman et al.11 

C: 68Ga-citrate PET/CT of a patient affected by acute 

osteomyelitis of the left distal tibia. Adapted from 

Figure 6 (A 68Ga-citrate PET/CT scan of a patient 

affected by acute osteomyelitis of the left distal tibia. 

The scan demonstrates an area of increased tracer 

uptake (red area), corresponding to an area of 

decreased bone density on the CT images, which is 

consistent with acute inflammation) by Roivainen et 

al.16 with kind permission from Springer Science and 

Business Media.  

D: 11C-GR205171 PET of a patient with unilateral chronic 

tennis elbow. Adapted from Peterson.17 
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expression has been reported in the thalamus after 
peripheral nerve injuries36 and in widespread 
cortical regions after traumatic brain injury.37 
PRB28, a second-generation, high-affinity TSPO 
radioligand suitable for imaging of microglial 
activation in neuroinflammation,38 is currently 
being explored for pain imaging. 

MAO-B expression occurs primarily in astro-
cytes, while TSPO expression occurs in activated 
microglia and to a lesser degree in active astrocytes. 
Compared with the microglial response to nerve 
injury, astrocyte proliferation begins relatively late 
and progresses slowly but is sustained for more than 
5 months, a time-frame paralleling the development 
of chronic pain.39 Unlike microglia, astrocytes form 
networks with themselves and are closely associated 
with neurons and blood vessels, a close contact that 
makes it possible for astrocytes to regulate the 
external chemical environment of neurons during 
synaptic transmission. Moreover, there is recent 
evidence that spinal astrocytes but not microglia 
contribute to the pathogenesis of painful neur-
opathy.39 Thus, the astrocyte and microglial systems 
are somewhat orthogonal, and site-specific PET 
probes may be used indicate different pathological 
mechanisms. 

IMAGING NERVES IN PAIN 

High-resolution magnetic resonance neurography 
provides excellent visualization of peripheral nerves 
and may be an integral component in evaluating 
nerve injuries, supplementing electrodiagnostic 
(ED) studies, such as electromyography, nerve 
conduction studies, and quantitative neurosensory 
testing.40 Structural imaging of nerve bundles, how-
ever, has been optimized to provide 3-dimensional 
high-resolution and high-contrast neurography. 
Diffusion-weighted magnetic resonance imaging 
(DWI) demonstrates the random diffusion of water. 
By evaluating water diffusion in multiple directions, 
nerve fiber tracts, with their myelin sheath, may be 
visualized though tractography, as water diffuses 
along but not across the nerve bundles.41 

Functional imaging of the nerves and nerve roots 
has, to the best of our knowledge, not yet been 
achieved. The utility of structural and diffusion 
imaging of neuropathies is illustrated by a collection 
of prominent studies,42–45 reproduced in Figure 2. 

IMAGING NERVE ROOTS IN PAIN 

Primary afferent nerves in the dorsal root ganglia 
convey pain information to the central nervous 
system. Both peripheral inflammation and nerve 
damage can lead to alterations in anatomy and 
function of neurons within the ganglion, alterations 
that contribute to persistent pain states.46,47 While 
the dorsal roots are too small for standard 
neuroimaging approaches, the trigeminal ganglion 
serves an equivalent role for the trigeminal nerve. 
The trigeminal ganglion is located at the base of the 
brain in the posterior cranial fossa across the 
superior border of the petrous temporal bone. It 
comprises sensory neurons from the ophthalmic 
(V1), maxillary (V2), and mandibular (V3) divisions 
of the trigeminal nerve. We have demonstrated that 
fMRI can be used to assess both sensory (brush) and 
noxious thermal activation of the ganglion. Activa-
tion occurred ipsilaterally and somatotopically, as 
predicted by the known anatomical segregation of 
the neurons comprising the V1, V2, and V3 divisions 
of the nerve (Figure 3).46 We have further demon-
strated that sensory processing in patients with 
trigeminal neuropathic pain is associated with 
distinct activation patterns consistent with sensitiza-
tion within and outside of the primary sensory 
pathway,48 and, in a case study, we demonstrated 
trigeminal ganglion activation in photophobia.49 
Using diffusion tensor imaging, we have further 
been able to segment the peripheral trigeminal 
circuitry, trigeminal nerve branches (ophthalmic, 
maxillary, and mandibular nerves), ganglion, and 
nerve root, and further segment the spinal 
trigeminal and trigeminal thalamic tracts, which, 
respectively, convey information to the spinal 
trigeminal nuclei and ventral thalamic regions.50 
Moreover, we have demonstrated a direct pathway 
from the optic nerve to the pulvinar nuclei in the 
posterior thalamus, providing a possible mechanism 
for exacerbation of pain by light in migraine.51 Other 
groups have demonstrated alterations in trigeminal 
nerve diffusion in trigeminal neuralgia52–55 and in 
temporomandibular disorder.56 

Taken together, these studies demonstrate that, 
at least for cranial nerves, functional and diffusion 
MRI can provide mechanistic insight into pain 
processes at the interphase of the peripheral and 
central nervous system. 
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SPINAL CORD PAIN IMAGING 

Positron Emission Tomography (PET) 

The metabolic rate of glucose increases in the spinal 
cord during nociceptive in-flow,57,58 affording a 
mechanism to image spinal pain signaling using 
18F-fluorodeoxyglucose. We found no studies 
demonstrating altered spinal PET ligand uptake in 
pain, but such an endeavor appears possible if there 
is massive peripheral signaling. FDG is routinely 
used in oncological staging, and a retrospective 
analysis of cancer pain patients might demonstrate 
elevated FDG uptake in corresponding segments of 
the spinal cord. Ideally, such a study would utilize 
high-resolution PET in combination with MR or CT 
to delineate the spinal cord cross-section in multiple 
voxels, allowing assessment of anterior and poste-
rior segments, and possibly lateralization effects. To 
illustrate PET imaging of the spine, we present 
mean FDG standardized uptake values (SUV) 

obtained from two studies of 92 patients59 and 30 
patients60 without spinal malignancy (Figure 4). 

Magnetic Resonance Imaging  

Structural MRI is used routinely to assess spinal 
cord injuries, but due to the spine’s small cross-
section, and noise sources such as motion, 
cerebrospinal fluid (CSF) pulsation, and magnetic 
susceptibility, functional imaging of the spine is 
technically challenging. Recent developments in MR 
sequences and post-processing have opened up the 
field, and it is possible to define structure and 
function with greater specificity.61 The first 
functional spinal cord imaging results were 
published in 1999, indicating that 3-tesla imaging of 
the cervical spinal cord showed that repeated hand 
exercise led to a blood-oxygenation level dependent 
(BOLD)-like increase in spinal cord signal, 
predominantly on the ipsilateral spinal cord 
between C6 and T1.62 Since then, spinal fMRI has 

Figure 2. Examples of MRI Nerve Imaging. 

a: Tractography of the median nerve in carpal tunnel 

syndrome, where patients displayed a significant 

decrease in median nerve fractional anisotropy. 

Taken from Figure 2 (Tractography image 

demonstrating the median nerve, coded in blue, with 

an excellent correlation, with the reference T1-

weighted image in a patient suffering from carpal 

tunnel syndrome) of Khalil et al.44 with kind 

permission from Springer Science and Business Media.  

b: Three-dimensional diffusion-weighted reversed 

fast imaging with steady-state precession (3D 

DWPSIF) of enlarged plantar nerves in a patient with 

entrapments following a repeat tarsal tunnel surgery. 

Taken from Figure 5b (A 32-year-old female with 

medial and lateral plantar nerve entrapments 

following a repeat tarsal tunnel surgery … Notice the 

depiction of the enlarged plantar nerves on the 3D 

DW-PSIF image) of Chhabra et al.42 with kind 

permission from Springer Science and Business Media.  

c: Lumbar nerve roots in a healthy subject and a 

patient with right L1-S1 foraminal stenosis, indicative 

of nerve root entrapment. Taken from Eguchi et al.43 

with permission of the American Society of 

Neuroradiology. 
 

d: Fiber tracking reconstruction in a healthy woman and a patient with widespread endometriosis. Taken from 

Figures 2 and 3 (2: Example of fibre tracking reconstruction in a healthy woman showing S1, S2 and S3 nerve 

roots. Images are displayed in the coronal planes (radiological convention). Fibre bundles S1 to S3 display a 

homogeneous appearance and regular course bilaterally. 3: Fibre tracking reconstruction in a woman affected 

by endometriosis of the medium and posterior compartment. The fibre bundles are short, stubby and have lots 

of branches.) of Manganaro et al.45 with kind permission from Springer Science and Business Media. 
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been reported using multiple paradigms (pain, 
motor, vibration, light touch) in healthy subjects 
and in patient populations including carpal tunnel 
syndrome, spinal cord injuries, and multiple 
sclerosis. These studies, along with methodological 
advances, are the subject of two excellent reviews on 
state-of-the-art spinal cord imaging methods63 and 
applications64 that we refer the reader to for full 
details.  

COMPLETING THE PAIN CIRCUIT: 

CENTRAL NETWORKS 

There are only a handful of studies that have 
attempted to relate peripheral alterations to CNS 
dysfunction. An excellent example of such an 
approach is determining the relationship between 
carpal tunnel nerve conduction velocity and regional 
gray matter alterations in the brain.65 This study 
found that patients with carpal tunnel syndrome 
had significant gray matter reductions in the hand 
area of the somatosensory cortex, a reduction that 
was correlated to lower median nerve conduction 
velocity. Of note, diffusion tensor imaging (DTI) of 
the medial nerve pre and post carpal tunnel surgery 
indicates that postoperative clinical improvement is 
related to nerve diffusivity but not anisotropy.66 A 
next step may be to combine peripheral MR 
neurography with CNS imaging of brain morphology 
and function to evaluate how and when the 
periphery and CNS are affected by treatment. 
Another recent example used a combined analyte, 
behavioral, and imaging assessment of a rat sciatic 
nerve injury model to provide a “pathophysiological 
signature”; results indicate that the nerve injury was 
reflected in peripheral and central soft tissues, as 
well as in the expression of circulating cytokines, 
chemokines, and growth factors.67 

Functional MRI and machine-learning pattern 
recognition can be used to define neurologic 
signature of acute pain with high sensitivity and 
specificity.68 The hardware (3T MRI, PET, and PET-
MR), scanning sequences (structural, diffusion, 
BOLD, and spectroscopy), and analytical software 
now available have allowed the research community 
to quantify several aspects of the pain circuit,69–75 as 
illustrated in Figure 5. This circuitry is further 
linked to behavioral and psychological measures of 
pain experience, pain-related behaviors, and pain-
induced co-morbidities and risk factors such as 
catastrophizing, fear of movement, and depression. 
The levels of inquiry range from genetic via 

 

Figure 3. Somatotopically Organized Activation 

Patterns of the Human Trigeminal Ganglion Evoked by 

Noxious Heat to the Ophthalmic (V1), Maxillary (V2), 

and Mandibular (V3) Facial Regions. 

Adapted with permission from Borsook et al.46 

 

Figure 4. Midline 18F-FDG PET/CT of a Healthy Spinal 

Cord. 

Bar plot illustrates weighted mean cord-to-background 

(CTB) ratio from 122 patients.59,60 
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Figure 5. An Illustration of the Levels of Inquiry in Pain Behavior That Imaging Has the Possibility to Inform 

Upon. 

The Fear-Avoidance Model is an adaptation from Vlaeyen et al. and Lethem et al.69,70 Notably, inflammatory 

processes may interact at several levels of the pain behavior circuit. For example, the catechol-O-methyltransferase 

(COMT) val158met polymorphism may influence the neuronal71 and opioidergic72 response to pain (but see also 

Nicholl et al.73). Furthermore, the 18-kDa translocator protein (TSPO) Ala147Thr genotype asserts a strong influence 

on the binding affinity of microglial PET tracers74 and thus needs to be accounted for in between subject analyses. 

At the other end of the spectrum, imaging studies are beginning to explore how culture may interact with brain 

processing of perception and emotional valuation.75 
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neurophysiological to psychological and even 
sociological and anthropological domains (i.e. the 
perception, expression, and tolerance of pain are 
influenced by a variety of non-biological processes, 
such as disparities in work, economy, daily living, 
social life, gender norms, and cultural setting76-78).  

Clearly, the study of pain is and will remain a 
multidisciplinary field. Animal imaging of brain 
systems, reviewed by Borsook and Becerra,79 offers 
the possibility of imaging awake animals and may 
serve as a “language of translation” between pre-
clinical to clinical models. Human imaging, in turn, 
has strengthened and made objective the links 
between CNS neurophysiology and psychology of 
pain modulation. We foresee a similar development 
in the field of peripheral inflammation and spine 
imaging.  

FUTURE DIRECTIONS 

An increasing body of literature has implicated 
inflammation as a contributor to the initiation but 
also to the maintenance of chronic pain, whether it 
be an obvious inflammatory process produced by 
specific disease (e.g. rheumatoid arthritis, chronic 
pancreatitis), following trauma (e.g. post-surgical 
neuroinflammation), or other neuropathic condi-
tions such as complex regional pain syndrome 
(CRPS). It seems increasingly clear that peripheral 
inflammation may produce central inflammatory 
processes.80-85 In addition, central inflammation—
even in brain areas rarely considered to be involved 
in chronic pain, for example in the hippocampus—
produce neuropathic-like behavior in rats.86 In 
humans such changes in brain neuroinflammation 
contribute to altered pain87 and mood changes.88,89 
Thus, the ability to measure neuroinflammation in 
humans with pain in both the peripheral and central 
nervous systems may provide objective indices for: 
1) ongoing inflammation that may produce the 
maintenance of the disease either in the periphery83 
or centrally;36 and 2) objective measures for 
treatment effects. While imaging markers may 
provide an initial definition of the status of 
inflammation, blood or serum markers may 
eventually be more sensitive and provide a more 
cost-effective use in the clinic. 
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