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ABSTRACT 

The human body hosts rich and diverse microbial communities. Our microbiota affects the normal human 
physiology, and compositional changes might alter host homeostasis and, therefore, disease risk. The 
microbial community structure may sometimes occupy discrete configurations and under certain 
circumstances vary continuously. The ability to characterize accurately the ecology of human-associated 
microbial communities became possible by advances in deep sequencing and bioinformatics analyses. 
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THE NORMAL HUMAN MICROBIOTA 

The American microbiologist and biophysicist, Carl 
Woese, defined a three-domain system of 
taxonomy in which a domain (also empire) is the 
highest taxonomic rank of organisms. According to 
the Woese system, introduced in 1990, the tree of 
life consists of three domains: Archaea, Bacteria, 
and Eukarya.1 Many members of the first and 
second domains live a life of convenience within us. 

 

The human body hosts complex microbial com-
munities whose combined membership outnumbers 
our own cells by at least a factor of 10.2,3 In order to 
characterize the ecology of human-associated 
microbial communities, the National Institutes of 
Health launched in 2007 the Human Microbiome 
Project (HMP). The findings of this sentinel study 
were published in 2012. Briefly, a total of 4,788 
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specimens from 18 female body habitats and 15 male 
body habitats representing five major body areas 
(oral cavity and oropharynx, skin, nostrils, 
gastrointestinal tract, and vagina) were collected 
from 242 healthy adults. These samples were 
subjected to 16S ribosomal RNA (16S rRNA) gene 
pyrosequencing, and a subset were shotgun-
sequenced for metagenomics. Rich communities in 
each of the body’s habitats were found with strong 
niche specialization both within and among 
individuals. Interestingly, oral (considered part of 
the upper respiratory tract) and stool communities 
were especially diverse in terms of community 
membership.4 It was shown that, within habitats, 
interpersonal variability is high, whereas individuals 
exhibited minimal temporal variability.4,5 

Analyses of the taxonomic diversity associated 
with the human microbiota (the collection of micro-
organisms that are present in a community from a 
defined body habitat) became an area of great 
importance. The study of the nature and extent of 
the commonly shared taxa (“core”), versus those less 
prevalent, establishes a baseline for comparing 
healthy and diseased groups by quantifying the 
variation among people, across body habitats, and 
over time. The HMP has provided an unprecedented 
opportunity to examine and define better what 
constitutes the taxonomic core within and across 
body habitats and individuals. A two-parameter 
(taxonomic ubiquity and abundance) model was 
introduced by Li et al. to identify quantitatively the 
core taxonomic members of each body habitat’s 
microbiota across the healthy cohort.6 Although 
many microbes were shared at low abundance, they 
exhibited a relatively continuous spread in both 
their abundance and ubiquity, as opposed to a more 
discretized separation. The numbers of core taxa 
members in the body regions are comparatively 
small and stable, reflecting the relatively high, but 
conserved, interpersonal variability within the 
cohort. Core sizes increased across the body regions 
in the order of: vagina, skin, stool, and oral cavity. A 
number of “minor” oral taxonomic cores were also 
identified by their majority presence across the co-
hort, but with relatively low and stable abundances. 
A method for quantifying the difference between 
two cohorts was introduced and applied to samples 
collected on a second visit, revealing that, over time, 
the oral, skin, and stool body regions tended to be 
more transient in their taxonomic structure than the 
vaginal body region.6 

The human microbiota harbors thousands (and 
perhaps many more) of bacterial taxa. Over time the 
full picture is revealed and novel bacterial taxa are 
being identified. Wylie et al. assessed metagenomic 
data generated by the HMP to determine if novel 
taxa remain to be discovered in stool samples from 
healthy individuals.7 They discovered several low-
abundance, novel bacterial taxa, which span three 
major phyla in the bacterial tree of life. They deter-
mined that these taxa are present in a larger set of 
HMP subjects and are found in two sampling sites 
(Houston, Texas and St. Louis, Missouri, USA). The 
majority of novel sequences are related to the re-
cently discovered genus Barnesiella, further encour-
aging efforts to characterize the members of this 
genus and to study their roles in the microbial 
communities of the gut. Understanding the effects of 
less-abundant bacteria is important as we seek to 
understand the complex gut microbiome in healthy 
individuals and link changes in the microbiome to 
disease.7 

THE ROLE OF MICROBIOTA IN ILLNESS 

Kluyver et al. stated that “the only truly scientific 
foundation of classification is to be found in 
appreciation of the available facts from a 
phylogenetic point of view. Only in this way can the 
natural interrelationships [among organisms] be 
properly understood.”8 

Modern medical microbiology focused on certain 
pathogenic bacteria, while the population of 
microbes in and on the human body was mostly 
considered to be vast and largely unknowable. It was 
referred to as “the normal flora,” the collection of 
“plants” living with us humans, and was treated as a 
black box. By and large, considering the overall 
scope of medical research, the microbiome was a 
backwater, the field of some highly specialized 
scientists and a few generalist pioneers.9,10 But then, 
things began to change, and this domain has 
recently emerged as an important factor in human 
physiology and disease. 

The dominant forms of interactions of humans 
and micro-organisms are commensal relationship 
and symbiotic relationship. Together, our ~100 
trillion microbial symbionts endow us with crucial 
traits: the human microbiota facilitates the 
extraction of energy from food, provides accessory 
growth factors, promotes post-natal terminal 
differentiation of mucosal structure and function, 
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stimulates both the innate and adaptive immune 
systems, and provides “colonization resistance” 
against pathogen invasion.11–14 If our microbiota 
affects human physiology, it should be no surprise 
that compositional changes might alter host homeo-
stasis and, therefore, disease risk. Indeed, analysis 
of the human microbiota implicates global alteration 
of microbial communities in a wide spectrum of 
human diseases such as asthma,15 obesity,16,17 bac-
terial vaginosis,18 and inflammatory bowel disease 
(IBD).19,20 Regarding the last-mentioned, for 
instance, it is now generally accepted that altered 
composition and function of the commensal enteric 
bacteria provide the constant antigenic stimulation 
which, in turn, continuously activates pathogenic T 
cells with resultant chronic intestinal injury.20 The 
characteristics of the dysbiotic microbiota associated 
with IBD have been highly reproducible, including 
an enrichment of bacterial taxa belonging to the 
Proteobacteria and Actinobacteria phyla, a decrease 
in representation of Firmicutes, and a reduction in 
microbial richness, the last-mentioned being an 
indication that there are fewer microbial species in 
total.21 Although it is relatively difficult to establish a 
causal association between the microbiome and 
many of the chronic diseases described above, 
establishing a causal association with acute onset of 
infectious diseases such as Clostridium difficile 
infection (CDI) is easier. Actually, CDI is the only 
disease process in which it was demonstrated that 
the dysbiotic microbiota plays a role in disease 
pathogenesis and in which restoration of the normal 
healthy microbiota is an effective therapy. 
Consumption of antibiotics dramatically, but transi-
ently, alters the composition of the gut microbiota, 
providing a niche in which C. difficile can expand.22 

THE EVOLUTION OF THE MICROBIOTA 

As was shown in the HMP, the bacterial diversity in 
the human body is striking in its richness of distinct 
species and strains; however, it is noteworthy that a 
limited number of phyla are commonly found in 
indigenous microbial communities. Only four of the 
more than 50 bacterial phyla that have been identi-
fied in the environment (Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria) dominate 
human mucosal and cutaneous habitats, which 
suggests that strong selective forces have limited 
diversity over at least hundreds of thousands of 
years of co-evolution.23–25 Despite this stereotypical 
assembly process, each individual in a single 
mammalian species, including Homo sapiens, has a 

virtually unique microbiota.26,27 The composition of 
the indigenous microbiota evolved over millions of 
years in a generally orderly manner in response to 
diet and other environmental factors and is also 
influenced by diverse human genetic backgrounds. 
However, beginning in the nineteenth century and 
accelerating in the twentieth century, there have 
been dramatic changes in human ecology, including 
cleaner water, smaller families, an increased num-
ber of Caesarian sections, increased use of pre-term 
antibiotics, lower rates of breastfeeding, and more 
than 60 years of widespread antibiotic use, particu-
larly in young children. And as human ecology 
changes, so does our microbiota. The permanent 
and widespread change in our microecology, in 
analogy to our altered macroecology, is referred to 
as the “disappearing microbiota” hypothesis.28,29 
The following two observations describe disappear-
ing bacteria and the consequences of loss. Although 
Helicobacter pylori was once present in almost 
every adult human, the bacterium is now rapidly 
disappearing from human populations owing to 
changes in sanitation, demographics, and antibiotic 
usage. Today, fewer than 10% of children in the USA 
harbor this bacterium in their stomach. 
Helicobacter pylori modulates immunological, 
endocrine, and physiological functions in the 
stomach.30 The biological costs of carrying H. pylori 
include peptic ulcers and adenocarcinoma of the 
distal stomach. Conversely, certain strains also 
protect against gastroesophageal reflux disease 
(GERD) and its consequences, including esophageal 
adenocarcinoma, owing in part to their effects on 
gastric acid secretion.28 These observations are 
consistent with the rise of these diseases wherever 
H. pylori is disappearing. Streptococcus 
pneumoniae (known as the pneumococcus) is an 
important human pathogen, causing pneumococcal 
pneumonia, infections of the upper respiratory tract 
and its appendages, and occasionally lethal diseases 
such as meningitis and endocarditis.31 However, 
pneumococci are carried by healthy persons in the 
nasopharynx, often for months, and are part of the 
consortia of micro-organisms inhabiting this niche. 
The clinical significance of S. pneumoniae pushed 
for vaccine development. These vaccines are 
effective and have reduced the incidence of serious 
pneumococcal infections in high-risk populations.32 
Immunization not only protects against disease but 
also prevents colonization by those pneumococci 
with the capsule types that are present in the 
vaccine.33 Except for the predicted consequences of 
replacement with non-vaccine serotypes of S. 
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pneumoniae,32,34,35 replacement with an 
unanticipated violent organism, Staphylococcus 
aureus, has occurred.34,35 These observations 
provide definitive examples of diseases caused by 
changes in the human microbiota. Except for these 
global phenomena, alteration in our microecology 
and consequently our health might occur on an 
individual basis, as each individual’s microbiota is 
subjected during the life to a wide spectrum of 
specific host-dependent factors such as smoking,36 
vaccinations, and antibiotic use. 

MICROBIOTA RESEARCH METHODS 

The ability to characterize accurately the complex 
structure and rich composition of these microbial 
communities became possible by advances in deep 
sequencing and bioinformatics analyses. Unlike 
conventional methods that can detect only a single 
microbe in a sample, the high-throughput, massively 
parallel, next-generation sequencing allows identifi-
cation of almost the entire microbiota present in a 
sample. With 16S rRNA sequencing, the final data 
set consists of thousands to millions of sequences 
from a segment of the 16S rRNA gene. Each 
sequence is taken to represent an individual micro-
organism, and the collection of sequences is taken to 
be representative of the community as a whole in 
terms of both types of organisms present and their 
relative abundance to one another. The bacterial 16S 
rRNA genes generally contain nine “hypervariable 
regions” that demonstrate considerable sequence 
diversity among different bacterial species and can 
therefore be used for species identification. Hyper-
variable regions are flanked by conserved stretches 
in most bacteria, enabling PCR amplification of 
target sequences using universal primers. 

Furthermore, by using even newer technologies 
capable of sequencing billions of DNA base pairs in 
a single run at an affordable cost, shotgun meta-
genomic sequencing can be performed in which 
community DNA is sequenced in totality, permitting 
not only an evaluation of microbial community 
structure but also allowing an evaluation of the 
genomic representation of the community. The 
latter can be used to help understand the functions 
encoded by the genomes of the microbiota. Shotgun 
metagenomic sequencing also can be used to charac-
terize the abundance of viruses, or the virome, bio-
logical entities that lack ribosomal genes yet are 
among the most abundant organisms in the 
biosphere.37 

In conclusion, the human body harbors thou-
sands of different bacterial taxa. The importance of 
this ecosystem is immense as analysis of the human 
microbiota implicates global alteration of microbial 
communities in a wide spectrum of human diseases.  
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