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ABSTRACT 

During the past 50 years, a dramatic reduction in the mortality rate associated with cardiovascular disease 
has occurred in the US and other countries. Statistical modeling has revealed that approximately half of this 
reduction is the result of risk factor mitigation. The successful identification of such risk factors was 
pioneered and has continued with the Framingham Heart Study, which began in 1949 as a project of the US 
National Heart Institute (now part of the National Heart, Lung, and Blood Institute). Decreases in total 
cholesterol, blood pressure, smoking, and physical inactivity account for 24%, 20%, 12%, and 5% reductions 
in the mortality rate, respectively. Nephrology was designated as a recognized medical professional specialty 
a few years later. Hemodialysis was first performed in 1943. The US Medicare End-Stage Renal Disease 
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(ESRD) Program was established in 1972. The number of patients in the program increased from 5,000 in 
the first year to more than 500,000 in recent years. Only recently have efforts for risk factor identification, 
early diagnosis, and prevention of chronic kidney disease (CKD) been undertaken. By applying the approach 
of the Framingham Heart Study to address CKD risk factors, we hope to mirror the success of cardiology; 
we aim to prevent progression to ESRD and to avoid the cardiovascular complications associated with CKD. 
In this paper, we present conceptual examples of risk factor modification for CKD, in the setting of this 
historical framework. 
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Rav Dimi from the Babylonian Talmudic Academy of Nehardea said: “Jealousy 
between scholars increases wisdom.” 

Babylonian Talmud, Tractate Bava Batra 21a

INTRODUCTION: CONTRASTING 
CARDIOLOGY AND NEPHROLOGY 

Over the last half century, we have witnessed a 
global reduction in the coronary heart disease 
mortality rate by approximately 60% (Figure 1).1 
Cardiovascular disease mortality rates in the US 
dramatically decreased from 805 deaths per 
100,000 people in 1963 to 236 per 100,000 people 
in 2010.2 Before that time, the incidence of 
cardiovascular disease-related death was on the rise. 
Myocardial infarction and sudden death would 
occur without warning, striking down individuals in 
mid-life, during the peak of their productivity.3 In 
addition, the pathophysiology of these disorders was 
not understood. 

It was in this context that the US National Heart 
Institute launched and co-ordinated the Framing-
ham Heart Study in 1949. This study would become 
a cornerstone in cardiac epidemiology, heralding 
numerous follow-up studies in different constitu-

encies and formats. The study, which began with 
5,209 patients who were followed longitudinally, is 
still ongoing and has enrolled three generations of 
participants. The analysis gave rise to the concept of 
risk factors for coronary disease, including hyper-
tension, high cholesterol, and smoking. This recog-
nition led to vigorous risk-reduction campaigns.4–6  

Models of the decrease in cardiac mortality from 
1980 to 2000 found that risk factor reduction 
explained 44% of the reduction in cardiac death; 
treatment was responsible for an additional 47% 
reduction in mortality. Furthermore, reductions in 
total cholesterol, blood pressure, smoking, and phy-
sical inactivity accounted for 24%, 20%, 12%, and 
5% reductions in the mortality rate, respectively.7  

Cardiovascular risk prediction formulae, which 
are important for gauging individual cardiovascular 
risk, are also useful for understanding population-
wide coronary disease risk.1,8 The Framingham risk 
estimation system, the most commonly used tool for 

  

Abbreviations: ACCORD, Action to Control Cardiovascular Risk in Diabetes; ACR, albumin-creatinine ratio; ADVANCE, 
Action in Diabetes and Vascular Disease Trial; AKI, acute kidney injury; AIPRD, ACE Inhibition in Progressive Renal Disease; 
ALLHAT Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial; ALTITUDE, Aliskiren Trial in Type II 
Diabetes Using Cardiorenal Endpoints; ARB, angiotensin receptor blocker; ATI, angiotensin II type 1; ATII angiotensin II type 
2; CKD, chronic kidney disease; COMBINE, CKD Optimal Management with Binders and Nicotinamide; DCCT/EDIC, Diabetes 
Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications; ESRD, end-stage renal disease; 
FGF23, fibroblast growth factor 23; GFR, glomerular filtration rate; IIH, idiopathic infantile hypercalcemia; KDIGO, Kidney 
Disease: Improving Global Outcomes; LVH, left ventricular hypertrophy; MDRD, Modification of Diet in Renal Disease; 
MRFIT, Multiple Risk Factor Intervention Trial; ONTARGET, Renal Outcomes with Telmisartan, Ramipril, or Both in People 
at High Vascular Risk Study; RAAS, renin–angiotensin–aldosterone system; NHANES, National Health and Nutrition 
Examination Survey III; REIN, Ramipril Efficacy in Nephropathy; RENAAL, Reduction of End Points in NIDDM with the 
Angiotensin II Receptor Antagonist Losartan; SEEK, Study to Evaluate Early Kidney Disease; T2DM, type 2 diabetes mellitus; 
UKPDS, The United Kingdom Prospective Diabetes Study; VALID, Preventing ESRD in Overt Nephropathy of Type 2 Diabetes; 
VA NEPHRON-D, Diabetes in Nephropathy Study, Combination Angiotensin Receptor Blocker and Angiotensin Converting 
Enzyme Inhibitor for Treatment of Diabetic Nephropathy. 
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this purpose, has been adjusted for use in various 
countries and was developed via cardiac epidemio-
logical studies. Research is presently underway to 
incorporate sets of single-nucleotide polymorphisms 
(SNPs) obtained from genome-wide association 
studies (GWAS) to increase the accuracy of coronary 
heart disease risk determination.9 

Paralleling these developments, clinicians who 
received scientific fellowship training in the labora-
tories of renal physiologists returned to their 
academic internal medicine departments to create 
divisions of nephrology.10 These departments sup-
ported active research on renal physiology while also 
providing clinical care to nephrology patients.11 The 
first kidney biopsies were performed in the 1950s. 
Although hemodialysis was first performed in 1943, 
it was typically performed outside of these depart-
ments because the procedure was viewed in many 
centers as academically unworthy.10 Kidney trans-
plantation was first developed in 1963.12 The pro-

vision of dialysis therapy to people with kidney dis-
ease challenged the young specialty. Hemodialysis 
initially lacked specific funding, and committees 
such as the Admissions and Policies Committee of 
the Seattle Artificial Kidney Center at Swedish 
Hospital determined which patients would receive 
treatment.13 Such groups, consisting of seven citi-
zens selected by The Kings County Medical Society, 
were formed to prevent doctors from needing to 
make these decisions regarding their own patients. 
Although the deliberations of the “God committee” 
were secret, a prominent article in Life Magazine 
detailing the thinking involved did emerge.13 

The idea of federal funding for end-stage renal 
disease (ESRD) was debated among clinicians, and a 
vocal minority backed Boston nephrologist Dr 
Norman Levinsky who wrote in the influential New 
England Journal of Medicine in August 1964 that 
“both chronic dialysis and transplantation … are 
properly considered clinical experiments rather than 

 
Figure 1. Global Age-standardized Coronary Heart Disease (CHD) Mortality Rates in Men and Women 45 to 74 
Years of Age, Based on World Health Organization Statistics. 
Copyright 2010, Wolters Kluwer Health, Inc. Used with permission from Cooney et al.1 Promotional and commercial 
use of the material in print, digital or mobile device format is prohibited without the permission from the publisher 
Wolters Kluwer Health. 
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established modes of treatment at this time.”14 
Dramatically, in October, 1971, Shep Glazer, then 
Vice President of the National Association of 
Patients on Hemodialysis testified before the House 
Ways and Means Committee while being dialyzed. 
In 1972, congressional approval was attained to 
expand funding for the Medicare dialysis program; 
soon afterward, nearly every nephrology division 
embraced dialysis. The creation of the ESRD 
Program as part of the Medicare program for 
patients of any age who required dialysis tasked 
nephrologists with the substantial job of providing 
dialysis treatments, an endeavor that overwhelmed, 
hindered, and did not provide incentives for the 
performance of epidemiologic research for the iden-
tification and mitigation of risk factors in order to 
reduce the onset and progression of chronic kidney 
disease (CKD). Physiological research regarding the 
pathogenesis of chronic kidney disease led to new 
treatments for patients and a vital taxonomy of 
kidney diseases; however, it did not significantly 
influence the treatment of the majority of individu-
als with CKD. Over the next 60 years, the progres-
sive advances in hemodialysis technologies did not 
affect the dialysis patient 5-year mortality that 
remained at ~50% (a mortality rate just slightly 
lower than that of lung cancer).15  

Although the initial estimates of individuals who 
would require dialysis were low, the number of 
patients receiving dialysis treatment increased expo-
nentially. From an initial 5,000 patients in 1972, the 
US ESRD program expanded more than 100-fold to 
636,905 patients by 2012.16 Today, although 17,330 
kidney transplants are performed annually, 81,981 
patients remain on the active transplant waiting list, 
and numerous kidney transplantation candidates 
die while still on dialysis.16  

Numerous pathophysiological studies, particu-
larly those conducted by Drs Neal Bricker and Barry 
Brenner, have led directly to a paradigm shift in the 
treatment of CKD. Bricker proposed the “trade-off 
hypothesis,” in which he provided evidence that the 
production of hormonal factors in the setting of 
chronic renal failure was a homeostatic adaptation 
and not a consequence of a reduced glomerular 
filtration rate.17,18 As examples, he listed parathyroid 
hormone (PTH) and natriuretic factor. Bricker 
postulated that a circulating inhibitor of sodium 
transport alters the net movement of sodium from 
tubular fluid to the blood; recently this factor was 
purported to have been isolated.19 

Brenner and colleagues showed that intraglomer-
ular hypertension increases in residual nephrons 
following nephron loss. Systemic hypertension also 
increases intraglomerular pressure, which is modu-
lated by the vascular tone of the pre- and post-
glomerular arterioles, intraglomerular architecture, 
and hemodynamics. Elevated glomerular capillary 
pressure leads to an increased number of large non-
selective pores on the glomerular capillary wall, 
which promotes proteinuria.20–22 Growth-promoting 
factors are released in the remnant glomeruli, and 
these factors produce excessive extracellular matrix 
in the mesangial area, obliterating the capillary 
lumen and creating typical sclerotic lesions. 
Nephron loss is increased, and this effect augments 
these processes in other glomeruli.22 Glomerular 
hypertrophy in remnant nephrons, compensatory to 
nephron loss, also contributes to glomerular sclero-
sis. The latter effect was reduced in a rat model of 
nephron loss without hypertrophy, compared with 
five-sixths of nephrectomized rats with a higher 
glomerular area, despite similar elevations in intra-
glomerular pressure.23 Brenner and colleagues 
showed that the inhibition of the vasoconstricting 
effect of angiotensin II via angiotensin-converting 
enzyme (ACE) inhibitors, which is most pronounced 
at the level of the post-glomerular arterioles, re-
duces intraglomerular hydraulic pressure. The effect 
of these agents on kidney injury progression sup-
ports the association between high glomerular 
pressure and sclerosis. In addition, angiotensin II 
inhibition reduces the synthesis of reactive oxygen 
species, inflammatory cytokines, cell adhesion mole-
cules, and pro-fibrotic molecules such as TGFβ.24 

KIDNEY DISEASE AS A PUBLIC HEALTH 
CONCERN 

As the number of patients receiving dialysis care 
escalated, the potential associated costs began to 
alarm health care planners. In the words of the 
Kidney Disease: Improving Global Outcomes 
(KDIGO) 2009 Conference Report, the “rising 
prevalence, poor outcomes, and high costs of 
chronic kidney disease has led to its recognition as a 
public health threat.”25 Fundamentally, this recog-
nition represented a paradigm shift for neph-
rologists and transformed kidney failure from a life-
threatening condition that affected a few people 
(although these few required dialysis and transplan-
tation) to a common condition that is the target of 
prevention, early detection, and management by 
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non-nephrologist physicians and public health 
agencies.26 As a result, a quiet but significant revo-
lution took place, beginning with the description of 
the model currently in use for CKD (Figure 2). This 
model spearheaded a redefinition of the diagnosis 
and treatment of CKD that relied on functional 
measures and the classification of kidney 

dysfunction via the degrees of albuminuria and 
nephron function loss (measured by estimated 
glomerular filtration rate, eGFR). The overwhelming 
numbers of patients with CKD has led nephrologists 
to follow cardiologists in using a Framingham-like 
model to identify the risk factors for CKD.  

 
Figure 2. Composite Ranking for Relative Risks by Glomerular Filtration Rate (GFR) and Albuminuria. 
Mortality is reported for general population cohorts assessing albuminuria as urine albumin-creatinine ratio (ACR). 
Kidney outcomes are reported for general population cohorts assessing albuminuria as either urine ACR or dipstick. 
Estimated glomerular filtration rate (eGFR) and albuminuria are expressed as categorical variables. All results are 
adjusted for covariates and compared with the reference cell (Ref). Each cell represents a pooled relative risk from 
a meta-analysis.  
Incidence rates per 1,000 person-years (calculated from the reference cells) are 7.0 for all-cause mortality, 4.5 for 
cardiovascular disease mortality, 0.04 for kidney failure, 0.98 for acute kidney injury (AKI), and 2.02 for kidney 
disease progression. Absolute risk can be computed by multiplying the relative risks in each cell by the incidence 
rate in the reference cell. See Levey et al.25 for full details. 
Colors on this heat map reflect the ranking of adjusted relative risk. The point estimates for each cell were ranked 
from 1 to 28 (the lowest RR having rank number 1, and the highest number 28). The categories with rank numbers 1–
8 are green, rank numbers 9–14 are yellow, the rank numbers 15–21 are orange, and the rank numbers 22–28 are 
colored red. Color for twelve additional cells with diagonal hatch marks is extrapolated based on results from the 
meta-analysis of chronic kidney disease cohorts and represents the highest risk. The highest level of albuminuria is 
termed ‘nephrotic’ to correspond with nephrotic range albuminuria and is expressed here as 2000 mg/g. 
Figure and legend reprinted by permission from Macmillan Publishers Ltd: Kidney International,25 copyright 2011. 
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CHRONIC KIDNEY DISEASE AS A MAJOR 
CARDIOVASCULAR RISK FACTOR 

The association between ESRD and accelerated 
cardiovascular mortality has long been recognized.27 
Mogensen first described microalbuminuria as a 
cardiovascular risk factor in people with diabetes.28 
Bigazzi et al. showed the importance of micro-
albuminuria in predicting cardiovascular risk among 
people with hypertension.29 Recent meta-analyses 
have demonstrated the continuous associations 
among macroalbuminuria, microalbuminuria, cor-
onary risk,30 and stroke.31 Other studies have shown 
that the use of renin–angiotensin–aldosterone 
system (RAAS) agents to decrease protein excretion 
can effectively reduce coronary risk.32–36 

In line with these findings, screening 60% of the 
patients at highest risk has prevented virtually all 
forms of cardiovascular disease.37,38 However, 
elderly patients present “reverse metabolic syn-

drome”39,40 in which lipid levels and blood pressure 
are reduced, thereby making screening for coronary 
disease challenging. Detection techniques such as 
ultrasound measurement of the carotid intima-
media thickness and CT scanning of the coronary 
arteries to show calcifications might accurately 
reveal subclinical atherosclerosis; however, these 
techniques are costly and therefore often unavail-
able. Estimated GFR and urinary albumin excretion 
might provide a cost-effective method to identify 
precisely the patients with cardiovascular disease. 

Small increases in serum creatinine are associ-
ated with cardiovascular events and mortality.41,42 
Go and colleagues studied the health records of ~1.1 
million adults in the Kaiser Permanente Renal 
Registry between 1996 and 2000 for >2 years and 
found an impressively graded association between 
estimated GFR and the risks for death, cardiovascu-
lar events, and hospitalization (Figure 3).43 Protein-

 
Figure 3. Death from Any Cause According to the Estimated GFR among 1,120,295 Ambulatory Adults. 
Among a large, diverse population of adults from Kaiser Permanente Renal Registry, a reduced estimated GFR was 
associated with increased risks of death, cardiovascular events, and hospitalization that were independent of known 
risk factors, a history of cardiovascular disease, and the presence of documented proteinuria. These graded risks of 
adverse events rose sharply for subjects with an estimated GFR of <45 mL per minute per 1.73 m2 for each outcome 
examined both in the overall cohort and in subgroup analyses. Furthermore, in this cohort as a whole, the absolute 
rates of these outcomes were considerably higher than the risk of end-stage renal disease.  
From Go AS et al.43 Copyright ©2004, Massachusetts Medical Society. Reprinted with permission from Massachusetts 
Medical Society. 
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uria was an independent risk factor for death. 
Chronic kidney disease, as determined via the com-
bination of decreased renal function (estimated 
GFR) and markers of kidney damage (proteinuria), 
accurately predicted cardiac events and death more 
effectively than each individual risk factor alone.44–47 
Foley and associates recently showed that the use of 
a “near-normal” estimated GFR cut-off of 94 
mL/min and an albumin-creatinine ratio (ACR) of 9 
mg/g, rather than the standard CKD thresholds, is 
highly sensitive and specific for selecting partici-
pants at risk of dying over the ensuing 9 years.48 
Similarly high thresholds for estimated GFR without 
albuminuria successfully predicted cardiac death in 
two additional studies.49,50  

Cardiovascular disease in the setting of CKD 
requires recognition and active treatment. Most 
patients with CKD succumb to cardiovascular dis-
ease rather than kidney disease. Recent meta-
analyses51,52 and KDIGO guidelines53 recommend 
the use of statin therapy for patients with CKD but 
not those receiving dialysis.  

RISK FACTORS FOR PROGRESSIVE CKD  

The effort to reduce CKD began with therapy for 
proteinuria and hypertension, which are recognized 
risk factors for CKD.54,55 The rate of progressive 
renal deterioration has a linear relationship with 
blood pressure treated by anti-hypertensive 
agents.56 Large controlled trials have documented 
the protein reduction properties of effective anti-
hypertensive therapy.57–59 The success in imple-
menting these therapies led to the identification of 
other CKD risk factors. 

Proteinuria 

The relationship between reduced proteinuria and 
progressive renal disease was first demonstrated in 
the Modification of Diet in Renal Disease (MDRD) 
Study in 1995,55 which also showed that patients 
with high urinary protein excretion benefit more 
from ACE inhibitor-based therapies.55 The inhibi-
tion of the RAAS either via ACE inhibitors or angio-
tensin receptor blockers (ARBs) reduces proteinuria 
and progressive renal deterioration in excess of what 
would be expected based on the reduction of blood 
pressure alone with other non-RAAS agents.60 The 
ACE Inhibition in Progressive Renal Disease 
(AIPRD) study, a cumulative meta-analysis of 11 
clinical trials including the Ramipril Efficacy in 
Nephropathy (REIN) study, found a strong correla-

tion between proteinuria and the decline rate of 
glomerular filtration rate (GFR) in patients with 
CKD.61 Together, the MDRD and AIPRD studies 
revealed an impressive 40% reduction in the risk of 
doubling serum creatinine concentrations with ACE 
inhibitor treatment compared with other antihyper-
tensive drugs in patients with CKD with protein 
levels >0.5 g per day.62 A similar effect was shown in 
patients with type 1 diabetes undergoing captopril 
treatment.63  

The Reduction of End Points in NIDDM with the 
Angiotensin II Receptor Antagonist Losartan 
(RENAAL) study found that baseline albuminuria 
was the strongest predictor of the primary com-
posite end-point of doubling of serum creatinine, 
end-stage renal disease (ESRD), or death in patients 
with type 2 diabetes mellitus (T2DM) with a serum 
creatinine level of 1.5–3.0 mg/dL.34 Overt protein-
uria or microalbuminuria predicted kidney deter-
ioration in a population with a high prevalence of 
CKD,64 individuals with hypertension and diabetes, 
and the general population.29,65,66 Significantly lower 
persistent microalbuminuria (6% in 3 years) was 
observed in patients with hypertension and T2DM 
with normal albuminuria treated by trandolapril 
compared to those receiving placebo (10%) or 
verapamil (11.9%).67 The anti-proteinuric and renal 
protection provided by ACE inhibitors was also 
observed in patients with diabetes and normal blood 
pressure but without microalbuminuria. The 
increase of albuminuria, even within the normal 
range, and the decrease of creatinine clearance were 
significantly lower in patients receiving enalapril 
compared with those receiving a placebo.68  

The theoretical added therapeutic benefit of 
ARBs emanates from the blockage of angiotensin II 
to the angiotensin type 1 (ATI) receptor interactions 
as well as through enhanced angiotensin II binding 
to the vasodilatory angiotensin type 2 (ATII) 
receptors.69 Albuminuria decreased by 28% among 
losartan-treated patients over the first 6 months of 
the RENAAL study compared with a 4% increase 
among the placebo group. The decrease in albumin-
uria in the losartan group was associated with 
improved kidney function, going beyond the drug’s 
blood pressure-lowering effect.34 Changes in albu-
minuria showed an approximately linear relation-
ship with the degree of long-term kidney protection. 
In particular, every 50% reduction in albuminuria 
was associated with a corresponding ~36% reduc-
tion in the risks of doubling of serum creatinine 
level, stage 5 CKD, or death. A similar effect was ob-
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served regarding other ARBs32,70 such as irbisartan. 
Treatment with ARBs has also been successful in 
patients with incipient diabetic nephropathy.71,72 The 
anti-albuminuric and renal protective effects of 
ARBs are similar, although slightly weaker, than the 
corresponding effects of the ACE inhibitors in early 
diabetic nephropathy.73  

Despite the enormous progress that has been 
made in the treatment of progressive kidney disease 
via RAAS inhibition, the residual kidney risk after 
treatment with an ACE inhibitor or an ARB remains 
high and is associated with residual albuminuria.74,75 
For example, in the RENAAL trial, losartan reduced 
the 3-year risk of doubling serum creatinine levels 
from 47% to 44%.33 In light of these high residual 
risk rates, recent reviews have examined various 
new strategies to enhance the effects of RAAS 
blockade.69,76 The RAAS is an endocrine cascade sys-
tem that can be inhibited at many levels, but it can 
be compensated for at other levels with a clinical 
response known as “escape.”69,76  

Clinical trials have examined the use of the 
combination of an ACE inhibitor and an ARB to 
prevent target organ damage.77 The Renal Outcomes 
with Telmisartan, Ramipril, or Both in People at 
High Vascular Risk (ONTARGET) trial compared 
the ACE inhibitor ramipril with the ARB telmisar-
tan, alone and in combination, among patients at 
high risk for vascular disease.78,79 Although the 
achieved mean blood pressure was lower in patients 
who received telmisartan or both agents than in 
those who received ramipril alone, no difference was 
observed with regard to the primary outcomes 
among any of the groups, and more adverse 
outcomes were noted in the combination group. 
Importantly, this trial did not evaluate ARB and 
ACE inhibitor therapy in patients with advanced 
proteinuric renal disease. The VA Nephron-D 
Diabetes in Nephropathy Study (VA NEPHRON-D), 
a trial using a combination therapy (i.e. ACE inhibi-
tor and ARB therapy versus ARB monotherapy) in 
patients with proteinuric diabetic nephropathy, was 
stopped because of the increased adverse events of 
hyperkalemia and acute kidney injury (AKI).80 The 
Aliskiren Trial in Type II Diabetes Using Cardio-
renal Endpoints (ALTITUDE) randomly assigned 
8,561 patients to aliskiren (300 mg daily) or a 
placebo as an adjunct to ACE/ARB monotherapy as 
an angiotensin receptor blocker. The trial was 
stopped prematurely because of adverse events 
(hyperkalemia and hypotension).81 Therefore, ACE 
inhibitors should not be used concomitantly with 

ARBs and renin inhibitors because of the increased 
risks for hypotension, hyperkalemia, and renal 
dysfunction.82  

Many studies have attempted to achieve 
additional benefit from ACE inhibitors and other 
renin–angiotensin–aldosterone-blocking agents by 
increasing their dosages. This reasoning is based on 
the original observation that the optimal anti-
proteinuric dose is not necessarily equal to the 
optimal antihypertensive dose. Many of these results 
have shown additional proteinuria reduction,83–87 
whereas others have not.88–90 However, similar to 
the initial studies regarding combination therapy 
with renin–angiotensin–aldosterone-blocking agents, 
many of these high-dosage studies are also short-
term examinations using blood pressure and albu-
minuria as outcome variables. These studies have 
not had sufficient power, and lack the duration 
needed to detect the safety signals and side effects 
rates that might emerge from end-point trials.82 
Therefore, before ultrahigh RAAS-blocking agent 
dosing can be recommended as a renoprotective 
therapy, further study of these drugs with kidney 
and cardiovascular event data is needed.82  

Optimization strategies for RAAS blockade have 
been suggested. First, a combination of sodium 
restriction and diuretic therapy is required to reach 
optimal RAAS inhibition in proteinuric patients.91–96 
Second, hyperkalemia, which limits the use of RAAS 
agents, has recently received effective treatment 
with patiromer and sodium zirconium cyclosilicate 
among outpatients.97,98 These two novel drugs add 
to the pharmacopoeia that until recently was limited 
to sodium and calcium polystyrene sulfonate, which 
have adverse gastrointestinal effects. 

Importantly, a few clinical caveats exist when 
treating proteinuria with RAAS inhibitors. First, 
greater initial decreases of renal function predict 
longer preservation of renal function.99 An initial 
loss of estimated GFR is not a concern unless it 
exceeds 30%, at which point diuretic-induced hypo-
volemia and renal artery stenosis should be consid-
ered.100 In addition, the importance of monitoring 
urinary albumin decreases following RAAS block-
ade.101 If the urinary albumin–creatinine ratio is not 
lowered by ≥30% or to <300 mg/g despite a blood 
pressure lower than 130/80 combined with a low-
sodium diet, then switching to another RAAS block-
er or diltiazem should be considered.79,102 Greater 
reductions in proteinuria are seen with treatment 
using non-dihydropyridine calcium channel block-
ers (CCBs) than with dihydropyridine CCBs.102  
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RAAS Inhibitors for Cardiovascular 
Protection 

The ACE inhibitors reduce the rates of death, 
myocardial infarction, stroke, and heart failure 
among patients with heart failure,103 left ventricular 
dysfunction,104 previous vascular disease,105 and/or 
high-risk diabetes.106 The ARBs are an alternative 
for patients who cannot tolerate ACE inhibitors 
Although ACE inhibitors and ARBs have an additive 
effect, the more effective indication is to combine 
ACE inhibitor therapy with an aldosterone 
antagonist.  

The MDRD study and other clinical interventions 
demonstrated strong interactions among protein-
uria, hypoalbuminemia, blood pressure, CKD pro-
gression, and an increase in the inflammatory 
state.55,107 Furthermore, microalbuminuria is an 
independent risk factor for cardiovascular disease. 
In patients with T2DM, an albuminuria level of 
20.1–30 mg/d was associated with a relative risk for 
cardiovascular disease of 9.8, and the relative risk 
for microalbuminuria was 12.4 compared with 
patients with albuminuria levels below 10 mg/d.108 
The beneficial effect of albuminuria reduction for 
cardiovascular outcomes is likely associated with 
improvements in endothelial function in addition to 
the indirect effect mediated through the mitigation 
of renal dysfunction.  

The ONTARGET trial assessed cardiovascular 
morbidity in patients with cardiovascular disease or 
high-risk diabetes but without significant albumin-
uria. Similar beneficial effects were observed regard-
ing ARBs as ACE inhibitors for cardioprotection. 
However, the combination of these agents with ACE 
inhibitors was not associated with an increase in 
cardiac benefit, whereas adverse events were more 
common.79  

Hypertension 

Hypertension is an uncontrolled and global public 
health challenge that is equally prevalent in 
developed and developing nations.109 In 2000, 25% 
of the world’s population had hypertension; how-
ever, approximately 29% (1.56 billion people) are 
expected to have hypertension by 2025. This in-
crease has been ascribed to the massive “epidemi-
ologic transition” of the developing world, with 
increasing proportions of elderly populations.110,111 
Hypertension is the leading cause of cardiovascular 
morbidity and mortality and a major cause of CKD.  

Perry et al. were one of the earliest groups to 
document carefully the association between increas-
ing levels of systolic blood pressure, cardiovascular 
disease, and CKD risk.112 They described the direct 
association between increments in blood pressure 
elevation and the development of renal failure in 
11,912 male veterans, 48% of whom were African-
Americans, followed for 15 years at Veterans Admin-
istration Hypertension clinics during the mid-1970s. 
The risk ratios for a systolic blood pressure of 165–
180 mmHg and of >180 mmHg were 2.8 and 7.6, 
respectively. Hospitalization for myocardial infarc-
tion doubled the risk for this disease; congestive 
heart failure increased the risk 5-fold and increased 
the rate of subsequent ESRD. The ESRD rate de-
creased by two-thirds among individuals whose 
systolic blood pressure fell by 20 mmHg.112 In addi-
tion, an increased risk of ESRD was associated with 
African ancestry (risk ratio=2.2).  

The Multiple Risk Factor Intervention Trial 
(MRFIT) examined the development of cardio-
vascular complications in 12,000 men over 16 years 
and found that elevations in baseline systolic blood 
pressure were correlated with the development of 
ESRD, even within the high-normal and mild hyper-
tensive ranges.113 This study also showed that effec-
tive blood pressure control stabilized or improved 
kidney function in Caucasians but not in African-
Americans.114 In a 25-year observational study of 
177,570 men and women, Hsu et al. demonstrated 
that small increases in systolic blood pressure within 
the pre-hypertensive and mild hypertensive ranges 
were correlated with increased CKD risk over time 
and an increase in the number of patients with 
ESRD.115 One risk factor for ESRD was high blood 
pressure (hazard ratio (HR) 2.94, 95% CI 2.21–3.92 
for stage 2 hypertension; HR 2.33, 95% CI 1.78–3.05 
for stage 1 hypertension; and HR 1.72, 95% CI 1.32–
2.24 for pre-hypertension versus normal). 

Forman and Brenner reviewed the evidence 
regarding a response to aggressive blood pressure 
reduction in “normotensive” individuals at high risk 
(diabetes, coronary artery disease, and cerebrovas-
cular disease) and suggested maintaining a blood 
pressure below 120/80 in these patients.116 How-
ever, the clinical trials such as the ACCORD study,117 
the Irbesartan Diabetic Nephropathy Trial 
(IDNT),118 and the International Verapamil SR-
Trandolaptil Study (INVEST)119 found no benefit in 
bringing the blood below 130/80. Tight control of 
systolic blood pressure in the latter two studies did 
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not yield improved cardiovascular outcomes and 
was in fact associated with an increase in all-cause 
mortality. These results have been summarized in 
other papers.120,121 

Whether kidney and cardiovascular risks are 
lower in non-diabetic patients with CKD and blood 
pressures <130/80 compared with <140/90 remains 
unclear. This issue was examined by four random-
ized trials,56,59,122,123 two of which failed to show a 
significant benefit.59,122 However, the MDRD study 
showed that a reduction in blood pressure from 
<140/90 to <125/75 reduced the risk of kidney 
disease progression (HR 0.68) after 10 years of 
reduced blood pressure.56 Similarly, strict mean 
arterial blood pressure control in children below the 
50th percentile for age versus a conventional 
therapy that corresponded to the 50th to 90th 
percentile for age led to decreased proteinuria and 
progression to ESRD (HR 0.65).124 The Cardio-Sis 
trial also demonstrated a benefit of blood pressure 
control in non-diabetic patients. Patients in the tight 
control group (<130 mmHg) developed less left 
ventricular hypertrophy (11% of 483 patients; odds 
ratio 0.63) and less frequently (4.8%) reached a 
composite cardiovascular end-point (HR 0.50) 
compared with patients under standard control 
(<140 mmHg; 17% and 9.4%, respectively).123 

No evidence supports a preference for RAAS 
agents over other anti-hypertensive drugs among 
patients with CKD who present with hypertensive 
nephrosclerosis without proteinuria. The Antihyper-
tensive and Lipid-Lowering Treatment to Prevent 
Heart Attack Trial (ALLHAT) did not find differ-
ences in the risk of exacerbated GFR or ESRD 
between patients given lisinopril, amlodipine, or 
chlorthalidone,125 even for the subgroup of patients 
with estimated GFRs <60 mL/min. Although 
proteinuria was not directly measured in these 
patients, it was not expected to be elevated.126 

Multidrug Remission CKD Clinic Protocols 
Small annual differences in the rates of GFR decline 
can result in large differences regarding ESRD onset 
time.127 The goal of the RAAS-based individually 
tailored multidrug anti-proteinuric and antihyper-
tensive treatments used over the last 15 years is to 
reduce proteinuria and the annual decline in 
eGFR.128 These protocols129 employ a combination 
therapy of ACE inhibitors and ARBs shown to 
reduce protein, kidney, and cardiovascular events 
more effectively than ACE inhibitors or ARB mono-
therapy.127,129,130 When proteinuria is minimal, a 

dual RAAS inhibitor is no more effective than a 
monotherapy (e.g. the ONTARGET Trial).79 The 
recent closure of the ALTITUDE and VA 
NEPHRON-D trials has placed the use of combina-
tion RAAS therapies on hold.80,81 A modified 
therapeutic strategy featuring a combination of 
lower-than-recommended doses of ACE inhibitors 
and ARB might block the RAAS system without 
excessive blood pressure reduction; moreover, the 
side effects of hyperkalemia and reduced kidney 
function are presently being investigated.130 The 
ongoing VALID trial, Preventing ESRD in Overt 
Nephropathy of Type 2 Diabetes Trial, is testing 
whether halved dosages of ACE inhibitor and ARB 
administered together compared with full doses of 
each agent alone result in a larger reduction in 
proteinuria and a delay in ESRD among approxi-
mately 100 individuals with type 2 diabetes over 3 
years (ClinicalTrials.gov.NCT00494715). The trial 
will be completed in February 2016. 

Updating the “Trade-off” Hypothesis 

Hyperparathyroidism 
The progression of CKD and cardiovascular mortali-
ty have been directly correlated with changes in the 
levels of phosphate, calcium, PTH, vitamin D, and 
fibroblast growth factor 23 (FGF23).131 Laboratory 
studies in rats have demonstrated that PTH 
decreases glomerular filtration by decreasing the Kf 
on the renal podocyte.132 The suppression of PTH via 
parathyroidectomy, calcimimetics (calcium-sensing 
receptor agonists), or dietary phosphate restriction 
attenuated the increase in serum creatinine in a rat 
remnant kidney model.133 Patients with CKD and 
secondary hyperparathyroidism have an increased 
mortality risk134 and a significantly shorter renal 
survival than those with CKD alone.135 Parathy-
roidectomy effectively reduces cardiovascular events 
and mortality in patients receiving hemodialysis 
with secondary hyperparathyroidism.136 

Phosphate 
The effect of phosphate on CKD progression might 
be directly mediated by changes in renal perfusion, 
calcifications, and intracellular calcium-phosphate 
concentrations, or through its indirect effects on 
PTH or calcium levels.137,138 The Irbesartan Diabetic 
Nephropathy Trial found that the risk of doubling 
serum creatinine levels, ESRD, or death139 was 
higher by a factor of 1.8 in hyperphosphatemic 
diabetics.139 The AASK analysis of African-American 
patients with hypertensive nephrosclerosis noted 
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that phosphorus was directly associated with a renal 
composite consisting of 50%, 25 mL/min GFR 
decline, or ESRD.140 Additional studies have shown 
that increasing serum phosphate concentrations are 
correlated with progressive renal failure141–144 and 
that phosphate restriction145,146 and phosphate 
binders stabilize renal function.147,148 An analysis of 
the medical files of 40,538 outpatients receiving 
hemodialysis registered in the Patient Profile 
System of Fresenius Medical Care found that high 
phosphorus was correlated with increased relative 
risks of death (1.07, 1.25, 1.43, 1.67, and 2.02 for 
serum phosphorus levels of 5–6, 6–7, 7–8, 8–9, and 
>9 mg/dL, respectively). Higher adjusted calcium 
levels as well as moderate and severe hyperpara-
thyroidism (PTH levels ≥600 pg/mL) were also 
associated with increased rates of death.149 High 
phosphate is also associated with increased mortali-
ty in patients with CKD.141,149,150 Serum phosphate 
levels within the normal range are associated with 
coronary artery calcification as determined by CT 
scanning in patients with stage 3 and 4 CKD with or 
without diabetes mellitus.151 The graded152,153 asso-
ciations between serum phosphate levels of >3.5 
mg/dL and coronary artery calcifications,156 cardio-
vascular disease, and mortality have also been 
extended to the general population.155–159 

In studying the population disparities in mineral 
metabolism,41,160 African-American patients with 
CKD demonstrate marked deficiencies in serum 25-
hydroxyvitamin D (25-OH vitamin D) and higher 
PTH levels than Caucasians.161–163 As these patients 
progress toward the need for dialysis, they show 
even more severe secondary hyperparathyroidism 
and 25-OH vitamin D deficiencies.164–166 This result 
was also shown by the multicenter Study to Evaluate 
Early Kidney Disease (SEEK) in 1,860 patients with 
early CKD, of whom 12% were African-American. 
African-Americans had significantly higher PTH, 
calcium, phosphorus, and bone-specific alkaline 
phosphatase levels. In addition, they had a 1.8-fold 
greater risk of elevated phosphate, a 2.7-fold greater 
risk of a 25-OH vitamin D deficiency <30 mg/mL, 
and a 4.7-fold greater risk of a severe 25-OH vitamin 
D deficiency. They also developed secondary hyper-
parathyroidism earlier in their CKD course at a GFR 
of 45–60 mL/min, whereas Caucasians generally 
developed hyperparathyroidism after their GFRs 
decreased to <30 mL/min.167 Gutierrez et al. showed 
that both healthy African-Americans and those with 
CKD had a fractional excretion of inorganic phos-
phate that was approximately 30% lower than that 

for Caucasians (P<0.001), and the fractional excre-
tion of calcium in African-Americans was approxi-
mately 35% lower than in Caucasians. Both African-
American and Caucasian patients with CKD had 
eGFRs between 15 and 60 mL/min, and they had 
similar PTH and FGF23 levels.168  

Kestenbaum and colleagues described the results 
of a genome-wide association study (GWAS) that 
investigated common genetic variations associated 
with serum phosphorus concentrations in the gen-
eral population.169 Seven loci were described, and 
one locus was found directly adjacent to SLC34A1, 
which encodes the kidney-specific type IIa sodium-
phosphate co-transporter (NaPi2a). Another was 
located adjacent to the calcium-sensing receptor, 
and one was located close to the FGF23 receptor. 
The SLC34A1 was also one of the 13 loci identified 
by the CKDGen consortium, which performed a 
meta-analysis of the GWAS data in 67,093 indi-
viduals of European ancestry from 20 predominate 
population studies to identify new genetic suscepti-
bility loci for reduced renal function.170 Although 
studied extensively in murine models where NaPi2a 
has been shown to serve as the central mediator of 
renal phosphate reabsorption,171,172 the role that this 
transporter plays in humans had been controversial 
until recently. Magen and associates recently de-
scribed two siblings with autosomal recessive 
Fanconi’s syndrome and hypophosphatemic rickets 
who featured a 21-base-pair in-frame duplication on 
SLC34A1. Functional studies have shown a complete 
loss of function of the mutant co-transporter, its 
failure to reach the plasma membrane, and an 
impairment of renal phosphate reabsorption. This 
study provided the first evidence in humans of the 
critical role that NaPi2a plays in human renal 
phosphate handling.173 Subsequently, novel loss-of-
function mutations in SLC34A1 were identified in 
members of families with idiopathic infantile 
hypercalcemia (IIH) not attributed to abnormalities 
in inactivation of vitamin D processsing, many with 
nephrocalcinosis.174,175 

A gain-of-function mechanism might explain the 
hyperphosphatemia in patients with CKD, especially 
in light of its recent identification as a prominent 
CKD locus.176 People who tend toward lower frac-
tional excretions of phosphate might exhibit in-
creased levels of NaPi2a.167 The high and inducible 
levels of expression suggest that variant versions 
differ in folding and may trigger an “endoplasmic 
reticulum associated stress response (ERAD).”177  

 

Rambam Maimonides Medical Journal 11 July 2015  Volume 6  Issue 3  e0029 
 



 

Prevention of Chronic Kidney Disease 
 

Vitamin D 
The diminished production of 1,25-OH vitamin D in 
renal disease likely facilitates interstitial fibrosis by 
allowing fibroblasts to proliferate.139 Vitamin D has 
been shown to prevent glomerular disease in animal 
models,178,179 and its derivatives decrease urine 
albumin excretion as well as reducing serum creat-
inine and glomerulosclerosis in subtotally nephrec-
tomized rats.180,181 In a retrospective analysis, 
patients with CKD who were treated with calcitriol 
showed a decreased rate of CKD progression.182 
Increasing evidence has shown that the vitamin D 
analogue, paricalcitol, an inhibitor of the renin–
angiotensin system,183 reduces urinary albumin. 
Three recent studies showed that paricalcitol 
reduces proteinuria in patients with CKD, including 
those presenting with diabetes.184–186 Paricalcitol 
reduced albuminuria and slowed the progression of 
kidney injury in laboratory animals.187,188 A recent 
double-blind, placebo-controlled study resulted in a 
20% reduction in the urinary albumin-to-creatinine 
ratios (P=0.053) and a 28% reduction in the 24-
hour urine albumin (P=0.009) of patients receiving 
2 μg of paricalcitol for 24 weeks compared with 
those receiving a placebo.189  

Decreased levels of 25-OH and 1,25-OH vitamin 
D are commonly observed in patients with CKD190 as 
well as associated with increased cardiovascular 
mortality.164,191 The treatment of CKD and ESRD 
populations using vitamin D compounds is associ-
ated with decreased mortality rates.192,193 However, a 
meta-analysis of 76 trials including 3,667 partici-
pants found that these compounds failed to reduce 
PTH levels or mortality rates consistently.194 Newer 
vitamin D compounds did decrease PTH levels (by 
11 pmol/L); intravenous therapy was more effective 
than oral therapy, but mortality rates were not 
affected. Additional observational studies by the 
same group confirmed the reduction of serum PTH 
and the increase in calcium and phosphorus follow-
ing treatment with vitamin D compounds but failed 
to show increased survival rates.195,196 These studies 
sparked a call for randomized controlled trials to 
establish a causal association between vitamin D 
supplementation and decreased CKD mortality.197 

Although the decreased production of 1,25-OH 
vitamin D has traditionally been ascribed to 
decreased renal mass (which subsequently leads to 
elevated serum phosphate and the inhibition of 
reduced 25-OH D-1alpha-hydroxylase), these 
mechanisms fail to explain the decline in 1,25-OH 
vitamin D in patients with early CKD who still have 

sufficient kidney mass and normal serum phosphate 
levels.198 

FGF23 
Fibroblast growth factor 23 (FGF23), which was 
initially characterized in a study of rare inherited 
disorders associated with phosphate metabolism,199 
regulates phosphate homeostasis and explains the 
decreases in 1,25-OH vitamin D in patients with 
early kidney disease. Its phosphaturic effect in the 
proximal tubules is accomplished through the down-
regulation of sodium-phosphate co-transporters, 
and it decreases 1,25-OH vitamin D levels via the 
inhibition of 25-OHD-1-alphahydroxylase and the 
upregulation of the 25-OHD-24 hydroxylase path-
way (Figure 4).198–203 Levels of FGF23 predict CKD 
progression from mild to moderate in patients of 
European ancestry,142 and they are among the 
strongest markers of CKD progression, with areas 

 
Figure 4. The Pathogenesis of Secondary Hyperpara-
thyroidism (SHPT) in Chronic Kidney Disease (CKD). 
The new perspective of SHPT in CKD emphasizes the 
degree of phosphate intake relative to the degree of 
kidney dysfunction and de-emphasizes the need for 
overt hypophosphatemia or hypocalcemia. Early FGF23 
excess may be a key upstream event of increasing PTH 
in CKD. Note also the early 1,25-D deficiency. 
Abbreviations: SHPT, secondary hyperparathyroidism; 
PTH, parathyroid hormone; CaR, calcium-sensing recep-
tor; VDR, vitamin D receptor.  
Adapted from Figure 3 of Wahl and Wolf201 with the kind 
permission of the author and of Springer Science and 
Business Media (copyright 2012, Springer and Advances 
in Experimental Medicine and Biology). 

 

Rambam Maimonides Medical Journal 12 July 2015  Volume 6  Issue 3  e0029 
 



 

Prevention of Chronic Kidney Disease 
 

under the receiver-operating characteristic (ROC) 
curves of 0.84 for the C-terminal FGF23 and 0.81 
for intact FGF23.131 Elevated FGF23 levels in 
patients with early CKD also predict early cardio-
vascular events such as myocardial infarction and 
stroke as well as the need for coronary artery or 
carotid artery intervention, peripheral arterial 
amputation or intervention, and death.204 Elevated 
FGF23 levels are associated with increased mortali-
ty,205,206 vascular calcifications,207 left ventricular 
hypertrophy and mass index,208 and bone metabol-
ism abnormalities in patients with ESRD.209 Strate-
gies to reduce FGF23 in early-stage CKD patients 
include dietary phosphate restriction,210 the use of 
phosphate binders,211 the administration of niacin,212 
and the restriction of administration of vitamin D-
type drugs and favoring therapy with calcimi-
metics.213,214 

The phosphate-regulating properties of FGF23 
are mediated via FGFR1c, which requires alpha 
Klotho as a co-receptor. Its sites of action in the 
kidney are the subject of an active investigation and 
include the decreased expression of NaPi2a and 
NaPi2c.215 The recent demonstration of FGF23-
mediated signaling in the distal convoluted tubule at 
the site of the alpha Klotho co-receptor adjacent to 
the NaPi2a-expressing proximal tubular cells likely 
represents FGF23 bioactivity through nephron-
specific events that have yet to be elucidated.216 
Saito et al. hypothesized that the initial aberration in 
this signaling pathway is the inappropriate upregu-
lation of NaPi2a receptors;217 this theory is con-
sistent with the association between the SLC34A1 
locus and CKD described above. 

An intriguing study recently found associations 
between FGF23 and body mass index (BMI), waist 
circumference, waist-to-hip ratio, serum lipids, and 
fat mass. In two cohorts of elderly European Cauca-
sian participants, FGF23 was negatively associated 
with HDL and apolipoprotein A1 as well as positive-
ly associated with triglycerides. An increase of one 
standard deviation in the log-FGF23 levels was 
associated with a 7%–20% increase in BMI, waist 
circumference, and waist-to-hip ratio as well as a 
7%–18% increase in trunk and total body fat mass as 
determined using whole-body dual X-ray absorp-
tiometry. Levels of FGF23 were higher in partici-
pants with metabolic syndrome or at an increased 
risk of metabolic syndrome,218 indicating that 
FGF23 underlies cardiovascular risk via either phos-
phate or adverse lipid metabolism. The authors of 
that study cautioned against extending this associa-

tion to African-American and Latino populations 
receiving dialysis; however, they emphasized that 
these populations have lower FGF23 levels205 and a 
dialysis survival advantage.164,219,220  

Consistent experimental and human epidemio-
logic findings have suggested a need to test thera-
peutic approaches to lower phosphate levels in 
patients with CKD.221 Pilot studies of patients with 
stage 3 or 4 CKD suggest that phosphate binders, 
low phosphate diets, and vitamin B3 derivatives 
such as niacin and nicotinamide reduce phosphate 
absorption, serum phosphate, and FGF23. This 
novel therapeutic approach will be tested in the CKD 
Optimal Management with Binders and Nicotina-
mide (COMBINE) Study, with intermediate cardio-
vascular disease end-points to include left ventricu-
lar hypertrophy (LVH), vascular calcification, and 
CKD progression.  

Obesity and Metabolic Syndrome 
Obesity and associated metabolic syndrome, the 
results of Western dietary habits and sedentary 
lifestyles, exist at epidemic proportions in the US 
and are spreading worldwide.222 The continuous 
increase in obesity decreases life expectancy and 
general health.223 Obese participants are at greater 
risks for hypertension, insulin resistance and 
diabetes, hyperlipidemia, various cancers, and 
coronary vascular disease.224 Obesity and metabolic 
syndrome are also associated with pathologic renal 
changes and decreased renal function.224,225  

Recently, the likely causes of the obesity epidem-
ic were reviewed.226 Attempts to battle the problem 
have concentrated on decreasing fast food and trans 
fats intakes by providing nutritional information in 
stores and restaurants as well as reducing the 
consumption of soft drinks and high-fructose corn 
syrup.222 Numerous studies have associated 
increased trans fats intake with an increased risk of 
coronary disease.227–229 The intake of high-fructose 
corn syrup causes lipid abnormalities and hepatic 
insulin resistance.230 Epidemiologic studies show 
that the consumption of beverages containing a 
combination of sugars (including fructose) are 
associated with increases in body weight, metabolic 
syndrome, and cardiovascular disease.231 Similarly, 
the heightened use of artificial sweeteners is associ-
ated with obesity.232 Increasing evidence suggests 
that artificial sweeteners do not activate food reward 
pathways in the same manner as natural sweeten-
ers,233 as demonstrated by the lack of the prolonged 
signal depression in the hypothalamus observed 
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following glucose ingestion. Finally, sucrose inges-
tion, compared with saccharin ingestion, results in 
the greater activation of the higher gustatory areas 
such as the insula, orbitofrontal cortex, and the 
amygdala; this information might be useful for 
limiting energy intake.233–235 

Obesity 
The incidence of obesity, defined as a BMI of ≥30 
kg/m2, has doubled since 1960. This condition 
affects one-third of the adult population in the US. 
The rise in overweight children from 6% to 19% over 
the past 25 years is even more alarming.236 Obesity 
is rapidly exceeding smoking as the leading cause of 
preventable death in the US.224 Eight studies have 
related excess body weight to the development of 
CKD and ESRD.237 An analysis of 320,252 members 
of the Kaiser Permanente Health System demon-
strated that obesity is a risk factor for ESRD, with 
adjusted relative risks of 1.87, 3.57, 6.12, and 7.07 
for those with BMIs of 25–29.9, 30–34.9, 35–39.9, 
and >40 kg/m2, respectively.238 Although the World 
Health Organization continues to use BMI to define 
obesity, the waist-to-hip ratio has been shown to 
predict more accurately the myocardial infarct risk 
worldwide.239 The link between obesity (defined by 
waist-to-hip ratio) and CKD has been reported.240 
Even lean individuals with a high waist-to-hip ratio 
were at risk for developing microalbuminuria and a 
reduced estimated GFR.241 Obesity-related focal 
segmental glomerulosclerosis has also been de-
scribed.242 The pathogenesis of this disorder is likely 
related to hyperfiltration, with increases in kidney 
mass and a glomerular hypertrophy effect. Hyper-
filtration and increased filtration fraction are 
surrogate markers for elevated glomerular capillary 
pressures, which eventually result in obesity-associ-
ated glomerulosclerosis.243 Obesity-associated focal 
segmental glomerulosclerosis is associated with a 
lower rate of nephrotic syndrome and a more 
indolent course than idiopathic focal segmental 
glomerulosclerosis.242 

Paradoxically, a strong association between 
increased body mass index (BMI) and lower mortal-
ity has been described in numerous studies of 
patients with stage 5 CKD undergoing maintenance 
hemodialysis with the benefits of a larger size 
extending into morbid obesity (BMI>35 kg/m2).244 
This has been extended by two studies of patients 
with CKD where low BMI predicted greater mortali-
ty, whereas increased BMI was associated with 

greater survival even after adjustment for known 
confounding variables.245,246 The reasons for this 
association have not been determined. 

Metabolic Syndrome 
Associations between metabolic syndrome and both 
CKD and microalbuminuria have also been found in 
numerous studies, and Peralta et al. recently 
reviewed these relationships.247 After examining the 
data of 6,217 adults in the National Health and 
Nutrition Examination Survey III (NHANES), 24.7% 
of whom had metabolic syndrome, Chen et al. 
demonstrated graded relationships between the 
components of metabolic syndrome and the risks for 
CKD and microalbuminuria.248 Due to the cross-
sectional nature of the study, determination of the 
temporal relationship between metabolic syndrome 
and CKD was not possible.247 The Atherosclerosis 
Risk in Communities Study (ARIC) examined more 
than 15,000 individuals and found that 21% 
(n=2,110) and 7% (n=691) developed metabolic syn-
drome and CKD, respectively, over a 9-year period; 
moreover, a similar graded relationship was found 
between the components of the syndrome and the 
risk for CKD. The odds ratio for the rate of CKD 
among participants with metabolic syndrome was 
1.24 (95% CI 1.01–1.51).  

Similarly, experimental hyperlipidemia models 
have demonstrated associations among progressive 
kidney damage, atherosclerosis, focal segmental glo-
merulosclerosis, and tubule-interstitial disease.249 
Interestingly, a recent investigation of 19,246 par-
ticipants in the southern US documented an associa-
tion between a high saturated fat intake and albu-
minuria; however, no relationship was found with 
regard to decreased GFR.250 Moreover, an increased 
fructose intake (≥74 g/day) was implicated in 
obesity, metabolic syndrome, uric acid elevations, 
and hypertension; furthermore, it was a risk factor 
for kidney disease.251 High-fructose diets in animals 
led to renal hypertrophy, tubular cell proliferation, 
and injury. In a remnant kidney model, rats fed 
diets high in fructose developed metabolic syndrome 
and kidney disease progression.252 In humans, 6-
week diets containing 25% fructose caused insulin 
resistance, visceral obesity, and abnormalities in 
serum lipids consistent with metabolic syndrome.253 
The NHANES revealed an association between the 
ingestion of sugar-sweetened drinks and elevated 
uric acid levels; hypertension was also observed.253 
Similarly, the Nurses’ Health Study found that ≥2 
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daily servings of artificially sweetened soda was 
independently associated with a ≥30% decline in 
estimated GFR over 11 years.254 

A recent histopathologic study compared 
samples from 12 patients with metabolic syndrome 
undergoing nephrectomy for renal cancer with those 
from 12 controls.255 Samples from the patients with 
metabolic syndrome showed greater tubular atro-
phy, interstitial fibrosis, and arteriosclerosis as well 
as global and segmental glomerulosclerosis. These 
prominent interstitial changes led Saito et al. to 
postulate that the proximal tubular cell and, 
specifically, the multiligand megalin and cubilin 
receptors play a prominent role in the pathogenesis 
of this disorder.217 

Welsh et al. recently engineered two mouse 
models lacking glomerular podocyte insulin recep-
tors.256 Within 5 weeks, the animals began to show 
albuminuria and a shortening of the foot processes 
under electron microscopy. At 8 weeks, albumin-
uria, increased creatinine levels, the foci of segment-
al sclerosis, a thickening of the basement mem-
branes, histologic evidence of apoptosis, and 
histopathologic features of diabetic nephropathy 
were observed, demonstrating the importance of 
podocyte insulin sensitivity in kidney function.257 

According to the KDIGO guidelines, many 
patients with CKD should be treated with statins to 
prevent cardiovascular disease.53 

Diabetes Mellitus 
The importance of tight glycemic control to prevent 
kidney disease-related outcomes was recently 
demonstrated by the Diabetes Control and Compli-
cations Trial/Epidemiology of Diabetes Interven-
tions and Complications Study (DCCT/ EDIC).258 
The DCCT examined 1,441 participants with type 1 
diabetes mellitus (1982–1993) assigned to intensive 
(median HgA1C 7.2%) versus conventional (9.1%) 
treatment for 6.5 years. Subsequently, participants 
were followed for >18 years in the observational 
EDIC. The intensive treatment used three or more 
daily insulin injections or insulin pump therapy 
guided by self-monitored glucose. During the DCCT, 
the intensive treatment reduced the rate of micro-
albuminuria (albumin excretion rate (AER) >40 
mg/24 h) by 39% and that of macroalbuminuria 
(AER >300 mg/24 h) by 54% (24%–74%). During 
EDIC years 1–8, participants previously assigned to 
the DCCT intensive treatment experienced lower 
rates of microalbuminuria and macroalbuminuria, 

with risk reductions of 59% (30%–73%) and 84% 
(67%–92%), respectively. The beneficial effects of 
intensive therapy became evident at the end of the 
follow-up assessment, with reduced risks of 
impaired GFR (<60 mL/min) and hypertension of 
50% (18%–69%) and 20% (6%–21%), respectively. 
The risk for retinopathy and neuropathy was also 
reduced, but not the risk for cardiovascular events. 

With regard to type 2 diabetes, the kidney dis-
ease outcomes of the United Kingdom Prospective 
Diabetes Study (UKPDS),259 Kumamoto,260 Action in 
Diabetes and Vascular Disease Trial (ADVANCE),261 
and Action to Control Cardiovascular Risk in Dia-
betes (ACCORD)262 trials are consistent with those 
of the DCCT for patients with type 1 diabetes.258 
These analyses account for the relative differences in 
hemoglobin A1C achieved between treatment groups 
and the differences in study duration. A meta-
analysis of type 2 diabetics263 featured 28 trials that 
included 34,912 participants with type 2 diabetes 
who were randomly assigned to an intensive 
glycemic control group (n=18,717) or a conventional 
glycemic control group (n=16,195). Targeting inten-
sive glycemic control reduced the risk of microvas-
cular complications (i.e. nephropathy and retinop-
athy) but increased the risks for hypoglycemia and 
serious adverse events. Tight glucose control confers 
long-term benefits regarding the prevention of 
progressive diabetic kidney disease.  

Many individuals are not candidates for intensive 
glucose control in view of frequent episodes of 
hypoglycemia, impaired cognitive status, multiple 
co-morbidities, and shortened life expectancies. 
Clinical guidelines have therefore recommended 
hemoglobin A1C targets as follows: specifically 
“individualized” care with A1C ~6.5% for healthy, 
young patients; <7% in older individuals or those 
with co-morbid conditions, and <8% in older indi-
viduals with just a few years of life expectancy.264,265 

Other Risk Factors 
Studies recently have identified uric acid,266–268 
acidosis,269–272 and acute kidney injury273,274 as 
potentially modifiable risk factors for CKD.  

CONCLUSIONS 

By nature, nephrologists are intelligent, creative, 
and competitive. As such, we are envious of the 
extraordinary success of our cardiology colleagues in 
the treatment of cardiovascular disease, and we wish 
to mirror their success. The aforementioned discus-
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sion of CKD risk factors makes the conceptual 
historical point of the importance of risk factor 
modification. Using this approach, in collaboration 
with our fellow clinicians, we can prolong the lives 
of individuals with kidney disease, target cardiovas-
cular prevention, and decrease the number of 
patients referred for renal replacement therapy and 
kidney transplantation. Research presently under-
way will target multiple novel pathways and identify 
multidrug approaches to accomplish these 
goals.97,98,275  

The plateauing incidence of ESRD in the US over 
recent years indicates that these efforts have already 
shown success. The latest United States Renal Data 
System (USRDS) Annual Data Report from 2014 
showed that the rate of ESRD has fallen from 368 
cases per 1 million people in 2009 to 359 cases per 1 
million people in 2012. The actual incidence has also 
fallen from 115,114 in 2009 to 114,813 in 2012.16 This 
marks the first time that the USRDS has reported a 
decrease in the number of new patients with ESRD 
since it began reporting in 1980. A decrease in 
incidence counts has also been reported for a 
number of other countries including Israel,16 per-
haps reflecting attention to risk factor treatment. 
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