SYSTEMIC SCLEROSIS AND FIBROTIC CONDITIONS

Special Issue on Rheumatology Guest Editor: Alexandra Balbir-Gurman, M.D.

The Role of γδ τ Cells in Fibrotic Diseases

Ilan Bank, M.D.*

Department of Medicine, Maayenei Hayeshuah Medical Center, Bnei Brak, Israel; Rheumatology Unit, Autoimmunity Institute and Laboratory of Immunoregulation, Sheba Medical Center, Ramat Gan, Israel; and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

ABST RACT

Inflammation induced by toxins, micro-organisms, or autoimmunity may result in pathogenic fibrosis, leading to long-term tissue dysfunction, morbidity, and mortality. Immune cells play a role in both induction and resolution of fibrosis. $\gamma\delta$ T cells are an important group of unconventional T cells characterized by their expression of non-major histocompatibility complex restricted clonotypic T cell receptors for non-peptide antigens. Accumulating evidence suggests that subsets of $\gamma\delta$ T cells in experimentally induced fibrosis following bleo mycin treatment, or infection with *Bacillus subtilis*, play pro-inflammatory roles that instigate fibrosis, whereas the same cells may also play a role in resolving fibrosis. These processes appear to be linked at least in part to the cytokines produced by the cells at various stages, with interleukin (IL)-17 playing a central role in the inflammatory phase driving fibrosis, butlater secretion of IL-22, interferon γ , and CXCL10 preventing pathologic fibrosis. Moreover, $\gamma\delta$ T cells appear to be involved, in an antigen-driven manner, in the prototypic human fibrotic disease, systemic sclerosis (SSc). In this paper we review in brief the scientific publications that have implicated $\gamma\delta$ T cells in fibrotic diseases and their pro- and anti-fibrotic effects.

KEY WORDS: Fibrosis, systemic sclerosis, $\gamma\delta T$ cells

Abbreviations: AhR, a ryl hydrocarbon receptor; BAL, bronchoalveolar lavage; BLM, bleomycin; CCL, chemokine lig and; CXCL, chemokine C-X-C ligand; FPP, farnesyl py rophosphate; IL, interleukin; IPP, isopentenyl py rophosphate; KO, kn ockout; MHC, major histocom patibility; NKT, natural killer T; PBMC, peripheral blood mononuclear cells; r, receptor; SSc, system ic sclerosis; TCR, T cell receptor; UCD-200, University of California at Davisline 200; V, variable.

Citation: Bank I. The Role of $\gamma\delta$ T Cells in Fibrotic Diseases. Ram bam Maimonides Med J 2016;7 (4):e0029. doi:10.5041/RMMJ.10256 Review

Copy right: © 2 016 Bank. This is an open-access article. All its content, *except where otherwise noted*, is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of interest: No potential conflict of interest relevant to this article was reported.

* E-mail: ibank@post.tau.ac.il or ilanb@mhmc.co.il

1

INT RODUCTION

Extensive tissue deposition of extracellular matrix proteins by activated fibroblasts may lead to structural and functional tissue damage. Uncontrolled fibrosis may be a consequence of inflammation triggered by pathogens, autoimmunity or malignancies, and is related to dysregulation of multipletypes of immune cells including subsets of T cells.¹ γδ T cells, a "non-conventional" T cell population, were discovered in 1986 and, in contrast to "conventional" T cells expressing the $\alpha\beta$ T cell receptor (TCR), recognize non-peptidic antigens independent of major histocompatibility (MHC) molecules.²⁻⁵ In humans there are two major subsets; the first expresses TCR $\gamma\delta$ That use variable (V) region genes Vy9 and V δ 2 in the y and δ TCR polypeptides, respectively. Vy982 TCR sense low-molecularweight phosphoantigens of microbes, and host cellproduced phosphoantigens in the mevalonate pathway.6 These phosphoantigens bind to the extra-or intracellular domains of the cell surface membrane molecule butyrophilin 3A1 (CD277), inducing a novel structure or conformation that is detected by cells expressing the $Vy9\delta^2$ TCR, triggering their cytokine production and/or cytotoxicity.^{7,8} Thus, $V_{y}9\delta_{2} \gamma \delta$ T cells are poised to detect and respond to infections or altered intracellular metabolism induced, for example, by intracellular infections, or a malignant transformation. The second human $v\delta T$ cell subset is characterized by the V δ 1 genes in the δ TCR polypeptide. V δ 1+ y δ T cells are distributed along epithelial barriers. Their TCR detects lipid antigens presented by CD1 molecules, similar to natural killer T (NKT) cells.9,10 Although the murine immune system lacks phosphoantigen-reactiveyδT cells, the role of butyrophilins in $v\delta$ T cell development is retained in mice, at least for some subsets, as exemplified by the dependence of entire subsets of murine $\gamma\delta$ T cells on specific buty rophilins for their development and homing to the skin and gut.11-13 Readers are referred to comprehensive reviews of murine $\gamma\delta$ T cells by Vantourout and Hayday.4,5

Despite obvious distinctions between the murine and human $\gamma\delta$ T cells, there is ample evidence to indicate that the functional repertoire of $\gamma\delta$ T cells in both humans and mice includes cytokine production, cytotoxic ity, and help for B cells.⁴ Uniquely, moreover, subsets of these cells acquire their full functional potential during maturation in the thymus, contrasting with $\alpha\beta$ T cells that fully mature functionally only after encountering antigens in the peripheral lymphatic system. In this regard, in both humans and mice, yo T cells are similar to innate lymphocytes, which positions them at the forefront of the response to foreign invaders and internal "stress" conditions, including, for example, metabolic aberrations induced by malignancy, infections or other stressogens.4 Indeed, inflammatory, malignant, and infectious conditions are associated with numerical alterations of vo T cells in humans.14 Given their unique abilities to detect non-peptide antigens, that may evade adaptive $\alpha\beta$ T cells, and their rapid, non-MHC-dependent responsiveness, these cells may thus play a critical and uniquerole in diseases. Here, we review the involvement of the $\gamma\delta$ T cell subset in pathological fibrotic responses. Specifically, we concentrate on systemic sclerosis (SSc), the prototypic systemic fibrosing disease in humans, and on animal models in experimental settings mimicking SSc, as well as in organ-localized pulmonary and liver fibrosis.

$\gamma\delta$ T CELLS IN HUMAN FIBROSIS

Most of the evidence linking human yo T cells to fibrosis comes from studies of the systemic sclerosis (SSc). Thus, in SSc, $V\delta_1 + \gamma\delta$ T cells were identified in the skin during very early stages of SSc.15 Furthermore, the diversity of V81 junctional regions (composed of the variable [V], diversity [D], and joining [J] gene segments) in peripheral blood (PB) mononuclear cells (PBMC), lung, esophagus, stomach, or skin of patients was limited in SSc patients, and the same V δ 1-J δ junctional sequences could be isolated from multiple tissues suggesting an antigen-driven expansion of V δ 1⁺ y δ T cells in SSc.¹⁶ In a large group of patients, percentages of PByδ T cells were significantly lower in SSc patients with diffuse and late-stage disease with pulmonary involvement, muscle involvement, and the presence of anti-Scl-70 antibodies, mimicking the University of Californiaat Davis line (UCD)-200 chicken model described below.¹⁷ In addition, Vy9+yδ T cells persist in SSc patients' PB, respond by expression of CD25 and CD69 to a phosphoantigen, isopentenyl pyrophosphate (IPP), and induce contact-dependent, tumor necrosis factor (TNF) α-independent apoptosis of cultured synovial fibroblasts.18 However, higher concentrations of zoledronate, an aminobisphosphonate that increases IPP by inhibiting intracellular farnesyl pyrophosphate (FPP) synthase, were required for maximal proliferation of Vv9+T cells in SSc patients than in healthy controls, suggesting their dysfunction in SSc; yet these cells still secreted factors that inhibited collagen production.¹⁹ Furthermore, less anti-fibrotic cytokines TNF-α and IFN-γ were secreted in response to IPP in SSc. Indeed, reduction of procollagen secretion by fibroblasts cultured with supernatants of IPP-stimulated PBMC was observed only in some SSc patients.¹⁹ On the other hand, yo T cell supernatants from patients induced more proliferation of fibroblasts than αβ T cell supernatants, and doubling of collagen synthesis in human skin fibroblasts maintained in supernatants of SSc-derived yoT cells was observed, which was inhibited by anti-transforming growth factor-beta (TGFB) antibody and anti-basicfibroblast growth factor antibodies.20 Furthermore, PB y \delta T cells of SSc patients expressed higher levels of CD16 and CD69 compared to healthy controls, and collagen gene 1 (COL1) A2 mRNA expression was significantly higher in fibroblasts co-cultured with γδ T cells from SSc patients.²¹

ANIMAL MODELS

Systemic Sclerosis

The first indication that $\gamma\delta$ T cells participate in the pathogenesis of fibrotic conditions arose from research in UCD-200 chickens. These animals develop a hereditary connective tissue disease characterized by severelymphocytic infiltration and fibrosis of skin and internal organs, a model of human progressive SSc. The skin infiltrating mononuclear cells in the deeper dermis weremainly TCR $\alpha\beta$ cells, whereas the perivascular area of the papillary dermis was enriched for TCR $\gamma\delta^+$ lymphocytes.²²

Pulmonary Fibrosis Induced by a Non-Infectious Trigger

Bleomycin model: evidence for involvement of $\gamma\delta$ T cells

In the bleomycin (BLM) model of lung fibrosis induced by a single intratracheal instillation of BLM, >80% of the $\gamma\delta$ T cells in bronchoalveolar lavage (BAL) fluid expressed the E-cadherin binding α E β 7 integrin, at levels that were 2–3 times higher than on CD4+ or CD8+ T cells, suggesting a critical role for $\gamma\delta$ T cells in the pathogenesis of BLM-induced lung fibrosis.²³ After exposure to BLM, but not to *Schistosoma mansoni* eggs, the interleukin (IL)-17A that was produced by CD4+ and $\gamma\delta$ T cells induced significant neutrophilia and pulmonary fibrosis. In parallel, IL-17A and IL-1 β were increased in the BAL fluid of patients with idiopathic pulmonary fibrosis

(IPF).²⁴ Bleomycin or IL-1β-induced lung injury also led to increased expression of early IL-23p19and IL-17A or IL-17F. A very early IL-17A and IL-17F expression by ROR $\gamma t(+) \gamma \delta$ T cells could be demonstrated 24 h after BLM administration. In addition, IL-23p19 and IL-17A expressions or IL-17 RA signaling were necessary for pulmonary TGF^{β1} production, collagen deposition, and evolution to fibrosis.25 Likewise, in the surfactant protein C/TNFa (SP-C/TNF) transgenic mouse, where the TNFa transgene is overexpressed in type II pneumocytes, the absolute number of lymphocytes recovered were approximately four times that in littermates, and included vo T cells and B1 cells. In these mice the pulmonary lymphocytic infiltration is followed by fibrotic changes including accumulation of fibroblasts and deposition of extracellular matrix.²⁶ Moreover, when experimental animals were injected intravenously with saline or collagen (Col)V 10 days before intratracheal instillation of BLM, ColV-pretreated animals showed a significant reduction in lung inflammation compared with nontreated animals which associated with a lower proportion of γδ and CD4 + T cells.²⁷ Afterlung injury by BLM, $\gamma\delta T$ cells localized to the lung lesions and were the predominant source of IL-17 by flow cytometry and real-time polymerase chain reaction (PCR). yo T cell knockout (KO) mice showed a significant reduction in cellular infiltration into the airways, reduced expression of IL-6 in the lung, a significant delay in epithelial repair, and increased inflammation and fibrosis.28 In another study, although yoT cell populations increased after BLM administration, pulmonary fibrosis was more severe in yδ KO mice, as measured by collagen deposition (hydroxyproline) and histopathological features. Furthermore, there was no evidence of resolution of the fibrotic response up to 45 days after BLM therapy. yδ KO mice had decreased concentrations of IL-6, granulocyte colony-stimulating factor, chemokine C-X-C ligand (CXCL) 1, and interferoninducible protein 10/CXCL10. Importantly, γδ T cells produced all four of these cytokines, and $\gamma \delta T$ cells sorted from BLM-treated lung were sufficient to resolve fibrosis in γδ KO mice. Over expression of CXCL10 in the lung decreased the severity of fibrosis seen in the $y\delta$ KO mice, and adoptive transfer of $y\delta$ T cells from CXCL10(-/-) mice failed to reverse the severe fibrosis in $\gamma\delta$ KO mice. Thus, $\gamma\delta$ T cells promote resolution of fibrosis throughproduction of CXCL10.29 In addition, BLM-treated mice showed decreased levels of IL-22 in the lung, and IL-22producing y 8 T cells were also decreased significantly in the lungs and spleens. Blockade of IL-22 deteriorated pulmonary fibrosis, and was associated with elevated a-smooth muscle actin and overactivated Smad2. Thus, IL-22 produced by $\gamma \delta T$ cells may play a protective role in BLM-induced pulmonary fibrosis.30 Furthermore, BLM-induced lung inflammation and subsequent fibrosis was ameliorated in osteopontin (OPN)-deficient mice, whereas OPN was expressed ubiquitously in the lung parenchymal and bone marrow-derived components. The TH17 differentiation of CD4+ ab T cells and IL-17producing vδ T cells was reduced in OPN-deficient mice compared to wild-type mice, whereas TH1 differentiation and the percentage of IFN-y-producing γδT cells increased. Thus, OPN expressed in both parenchymal and bone marrow cell components contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17 / protective IFN-y T cells.³¹

Silicosis model

Silicosis evolved over months after exposure of inbred mice to cristobalite silica with accumulation of lymphocytes in alveolar spaces, in lung parenchymal lesions and nodules, and in enlarged bronchial-associated lymphoid tissues and thoracic lymph nodes. The lung lymphocytes were predominantly CD4+T cells, with numerous CD8+T cells, natural killer cells, and y8T cells.32 In another study upregulation of IL-17A was associated with the development of experimental silicosis, but was markedly reduced in athymic, yoT cell-deficient or CD4+ T cell-depleted mice. γδ T lymphocytes and CD4+T cells, but not macrophages, neutrophils, NK cells, or CD8 T cells, purified from the lungs of silicotic mice, markedly expressed IL-17A. Acute alveolitis induced by silica was IL-17A-dependent, but was dispensable for the late inflammatory and fibrotic lung responses.33

Melphalan model

Exposure to melphalan, a nitrogen mustard, induced an early burst of the pro-inflammatory cytokines IL-1 β , IL-6, and IL-23 in airways, followed by extensive infiltration of neutrophils in the lung tissue and airways. The acute phase was followed by a sustained lymphocytic response that persisted for at least 14 days with resulting lung fibrosis. Engagement of T lymphocytes, particularly the $\gamma\delta$ T cell subset, was crucial both for the acute cytokine and neutrophil response and for the late-phase lung fibrosis as indicated by the lack of response in $\gamma\delta$ T cell-deficient mice.³⁴

Pulmonary Fibrosis Following a Bacterial Infection

Bacillus subtilis

 C_{57} BL/6 mice repeatedly exposed to Bacillus subtilis develop mononuclear infiltrates containing $V\gamma 6^+/V\delta 1^+\gamma \delta T$ cells in the lung. In the absence of these, mice treated with B. subtilis had significantly increased collagen deposition in the lung, consistent with a regulatory role for $V\gamma 6^+/V\delta 1^+\gamma \delta T$ cells. Exposing transgenic Vy6+/V δ 1+mice to *B. subtilis* decreased collagen content in the lung compared with wild-type C57 BL/6 mice. Cytokine analysis of lungs from wild-type mice repeatedly exposed to B. subtilis demonstrated increased IL-17A concentrations. In the absence of IL-17 receptor signaling, IL-17ra(-/-) mice had delayed clearance of *B. subtilis*, with increased lung inflammation and fibrosis. Although IL-17A was predominantly expressed by $Vy6^+/V\delta1^+y\delta$ T cells, a compensatory increase in IL-17A expression by CD4+ T cells was seen in the absence of y & T cells that resulted in similar levels of IL-17A in the lungs of TCR $\delta(-/-)$ and wild-type C57 BL/6 mice, suggesting an important role for IL-17A-expressing $\gamma\delta$ or $\alpha\beta$ Tlymphocytes in eliminating the micro-organism and preventing excessive inflammation and eventual lung fibrosis.35 Likewise, in another study of this mouse model, $\gamma\delta$ T cells expanded in the lung and inhibited collagen deposition. A subset of these $\gamma\delta$ cells represents the predominantsourceof the TH17 cytokine IL-22 in this model. Preventing expression of IL-22 by mutating the aryl hydrocarbon receptor (AhR)-or inhibiting AhR signaling-accelerated lung fibrosis. Moreover, the presence of protective $\gamma\delta$ T cells and IL-22 diminished recruitment of CD4+ T cells to lung.³⁶ Finally, repeatedly exposing C₅₇ BL/6 mice to B. subtilis resulted in a 33-fold increase in the number of CD4+T cells and a 354-fold increase in $\gamma\delta$ T cells in the lung. The $\gamma\delta$ T cells consisted almost entirely of $V\gamma 6^+/V\delta 1^+ \gamma \delta$ T cells. Treatment of C57 BL/6 mice with heat-killed versus live B. subtilis resulted in a 2-fold increase in the number of CD4+ T cells in the lung but no expansion of yo T cells. In addition, mice treated with heat-killed B. subtilis developed significantly increased pulmonary fibrosis compared with mice treated with the live microorganism. Mice deficient in $Vy6^+/V\delta1^+y\delta$ T cells, when treated with B. subtilis, had a 231-fold increase in lung CD4+ T cells and significantly increased collagen deposition compared with wildtype C57 BL/6 mice, again consistent with an immunoregulatory role for the Vy6+/V\delta1+ y\delta T cell subset. 35

Tuberculosis

The acute phase of pulmonary tuberculosis induced in BALB/c mice by the intratracheal instillation of the live virulent strain H-37 Rv was characterizedby an inflammatory infiltrate in the alveolar capillary interstitium, blood vessel, and bronchial wall with formation of granulomas from 1 to 28 days after infection and a predominance of TH1 cells. The chronic phase was characterized by pneumonia, focal necrosis, and fibrosis. γδTlymphocytes were involved both at the beginning (3 days) and the later stages of the infection.³⁷ In bovine tuberculosis, there was an increase in the expression of TGF β , and of type I procollagen in advanced stage granulomas. As the granulomas advanced, there was a steady increase in the number of CD68⁺ cells and $\gamma\delta$ T cells.38

Liver Fibrosis Induced by a Non-Infectious Trigger

Carbon tetrachloride model

Increased IL-17A production was mainly detected in hepatic γδ T cells in wild-type mice. Liver fibrosis and IL-17A production by γδ T cells were both significantly attenuated in toll-like receptor (TLR)-3 KO mice compared with wild-type mice. Interleukin-17A-producing $\gamma\delta$ T cells were in close contact with activated hepatic stellate cells (HSCs), suggesting a role for HSCs in IL-17A production by γδT cells. Interleukin-17A production by γδT cells was substantially increased upon co-culturing with exosome-treated wild-type HSCs or conditioned medium from TLR3-activated wild-type HSCs. Tolllike receptor-3 deficiency in HSCs contributed to decreased IL-17A production by γδ T cells, as well as liver fibrosis. Thus, in liver injury, the exosomemediated activation of TLR3 in HSCs exacerbates liver fibrosis by enhancing IL-17A production by $\gamma\delta$ T cells, which might be associated with HSC stimulation by unknown self-TLR3 ligands from damaged hepatocytes.39 Chemokine receptor 6 (CCR6) and chemokine ligand (CCL) 20 expression were intrahepatically upregulated in patients with chronic liver diseases compared to control liver, with periportal accumulation of CCR6(+) mononuclear cells and CCL20 induction by hepatic parenchymal cells. In murine livers CCR6 was expressed by macrophages, CD4⁺, and $\gamma\delta$ T cells and upregulated in fibrosis, whereas CCL20 was induced by injury in

primary hepatocytes. In the carbon tetrachloride (CCl₄) and methionine-choline-deficient dietinduced murine models of chronic liver injury, Ccr6(-/-) mice developed more severe fibrosis with enhanced immune cell infiltration than wild-type mice, and CCR6 was required by IL-17- and IL-22expressing $v\delta$ T cells for accumulation in injured liver. Adoptive transfer of wild-type $y\delta$, but not CD4⁺ T cells, into Ccr6(-/-) mice reduced hepatic inflammation and fibrosis in chronic injury to wildtype level. The anti-inflammatory function of hepatic vo T cells was independent of IL-17, whereas yδ T cells co-localized with HSCs in vivo and promoted apoptosis of primary murine HSCs in a cell-cell contact-dependent manner, involving Fasligand (CD95L).40

Liver Fibrosis Induced by an Infectious Agent

Fasciola hepatica (fluke)

Ten days after primary infection with *Fasciola hepatica* (fluke), portal tract areas surrounding migratory tunnels were infiltrated with T cells and B cells. Micro-abscesses were distributed sporadically in the liver parenchyma, and young flukes were observed in the liver tissue free from inflammatory cells. Chronic primary infections were characterized by perilobular fibrosis and a predominance of CD8+ and $\gamma\delta$ T cells.⁴¹

Cryptosporidium parvum

Inoculation of mice deficient in $\alpha\beta$ and $\gamma\delta$ T cells with *Cryptosporidium parvum* resulted in persistent infection and severe inflammatory boweld is ease-like lesions contrasting with neonatal immunocompetent strains of mice which results in a transient, noninflammatory enteric infection. Glandular hyperplasia, abscess formation, and extensive fibrosis of the lamina propria and extensive hepatic periportal fibrosis were noted in persistently infected mice, which were not observed in mice deficient only in $\alpha\beta$ T cells.⁴²

Rotavirus

Livers from rhesus rotavirus-infected mice that develop biliary atresia (BA) had 7-fold more IL-17 messenger RNA than control mice (P=0.02). $\gamma\delta$ T cells were the exclusive source of IL-17. Mice that were developing BA and given antibodies against IL-17 had lower levels of liver inflammation. Likewise, liver tissues from patients with BA had 4.6-fold higher levels of IL-17 messenger RNA than control liver tissues (P=0.02).⁴³

Table 1. Models and Mechanisms of Pro- and Anti-fibrotic Effects of $\gamma\delta$ T Cells.

Model	Pro- fibrotic	Anti- fibrotic	Mechanism	Ref
BLM -induced murine lung fibrosis	+		IL-17 production by $\gamma\delta$ T and TH17 cells	25
BLM -induced murine lung fibrosis		+	Production of CXCL10 by $\gamma\delta$ T cells	29
BLM -induced murine lung fibrosis		+	IL-22 produced by $\gamma\delta$ T cells	30
BLM-induced lung fibrosis in osteopontin-deficient mice		+	IFN-γ-producing γδ T cells	31
Melphalan-induced murine lung fibrosis	+		Induction of pro-inflammatory cytokines, e.g. IL-6 and IL-1B	34
<i>Bacillus subtilis</i> -induced murine lung fibrosis		+	IL-17A-expressing γδ T cells involvement in removal of offending organism	35
<i>Bacillus subtilis-</i> induced murine lung fibrosis		+	Production of IL-22 by $\gamma\delta$ T cells	36
<i>Bacillus subtilis-</i> induced murine lung fibrosis		+	Immunoregulatory role of Vγ6/Vδ1(+) γδ T cell subset	35
Carbon tetrachloride (CCl ₄) murine model of liver fibrosis	+		TLR3 activation of IL-17 secretion by $\gamma\delta$ T cells	39
Carbon tetrachloride (CCl ₄) murine model of liver fibrosis		+	Promotion of apoptosis of hepatic stellate cells by $\gamma\deltaTcells$	40
Cryptosporidium parvum infection-induced murine liver periportal fibrosis	+		No mechanism presented	42
Rotavirus infection inducing murine biliary atresia	+		IL-17 production by $\gamma\delta$ T cells	43
Schistosoma japonicum-induced murine liver fibrosis	+		IL-17 production by $\gamma\delta$ T cells	44
<i>In vitro</i> experiments using human cells		+	Cell contact-dependent apoptosis of fibroblasts and reduction of collagen secretion byproducts of Vγ9Vδ2+T cells	18, 19
<i>In vitro</i> human experiments	+		Increased fibroblast proliferation and collagen production by supernatants of $\gamma\delta$ T cells of systemic sclerosis patients	20, 21

BLM, Bleomycin; CXCL10, C-X-C motif chemokine 10; IL, interleukin; TH, T helper; TL,toll-like.

Schistosomajaponicum

In C57 BL/6 mice infected with *S. japonicum* expression and release of IL-17 was significantly higher in hepatic lymphocytes from infected mice. Interleukin-17 was induced in all CD4⁺ and NK cells by PMA and ionomycin, but $\gamma\delta$ T lymphocytes exhibited the largest increase. Reducing IL-17 activity using anti-IL-17A antibodies decreased

infiltration of inflammatory cells and collagen deposition in the livers of infected C57 BL/6 mice.44

CONCLUSION

In summary, the data clearly indicate the involvement of $\gamma\delta$ T cells in major human fibrotic diseases, as well as in models of post-inflammatory fibrosisin animals. The experimental models, however, suggest

A hypothetical model is depicted of how two types of $\gamma\delta$ T cells, a T helper (TH) cell antigen-presenting cell (APC) and a myofibroblast, are involved in induction collagen secretion. The APCs are depicted presenting a peptidic antigen in MHC to the TH17 $\alpha\beta$ T cell receptor, or a lipid antigen to a $\gamma\delta$ T cell via a CD1 molecule, eliciting release of IL-17 that activates the myofibroblast to secrete collagen. Other $\gamma\delta$ T cells, of the phosphoantigen -recognizing variety in humans, or, in the murine system, a subset secreting IL-22 and CXCL10, may become activated by other antigens presented by butyrophilins, to exert anti-fibrotic activity by inducing apoptosis of the myofibroblast or hepatic stellate cells, or by suppressing TH17 cells. Red depicts pro- and blue anti-fibrotic functions.

dual involvement: a role in induction of inflammation that can lead to fibrosis by IL-17-secreting $\gamma\delta$ T cells, contrasting with a role in prevention of fibrosis related to $\gamma\delta$ T cells that mediate either killing of cells responsible for secreting the extracellular matrix, or by subsets of these cells that secrete either matrix-degrading enzymes, IL-22, CXCL10, or IFN γ (Table 1, Figure 1, and Workalemahu et al.⁴⁵). Much further study is required to elucidate the mechanisms that control pro- and antifibrotic effects of $\gamma\delta$ T cells in human disease, since manipulation of these responses might enable prevention or alleviation of severe human fibrotic diseases.

REFERENCES

- 1. Wy nn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012;18:1028–40. <u>Full Text</u>
- 2. Bank I, DePinho RA, Brenner MB, Cassimeris J, Alt FW, Chess L. A functional T₃ molecule associated with a novel heterodimer on the surface of immature

human thymocytes. Nature 1986;322:179–81. <u>Full</u> <u>Text</u>

- 3. Brenner MB, McLean J, Dialynas DP, et al. Identification of a putative second T-cell receptor. Nature 1986;322:145–9. <u>Full Text</u>
- 4. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gamma deltat cells to immunology. Nat Rev Immunol 2013;13:88–100. <u>Full Text</u>
- Hay day A, Vantourout P. A long-playing CD about the gammadelta TCR repertoire. Immunity 2013; 39:994-6. <u>Full Text</u>
- 6. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tum or cells. J Exp Med 2003;197:163–8. Full Text
- Vavassori S, Kumar A, Wan GS, et al. Butyr ophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 2013;14: 908–16. <u>Full Text</u>
- 8. Harly C, Peigne CM, Scotet E. Molecules and mechanisms implicated in the peculiar antigenic activation

process of human Vgamma9Vdelta2 T cells. Front Immunol 2015;5:657. <u>Full Text</u>

- 9. Sandstrom A, Scharf L, McRaeG, Hawk AJ, Meredith SC, Adams EJ. γδT cell receptors recognize the nonclassical major histocompatibility com plex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion. J Biol Chem 2012;287: 6035-43. Full Text
- 10. Luoma AM, Castro CD, Mayassi T, et al. Crystal structure of V δ 1T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human $\gamma\delta$ T cells. Im munity 2013;39:1032–42. Full Text
- Wang H, Henry O, Distefano MD, et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2T cells. J Immunol 2013;191:1029-42. <u>Full Text</u>
- 12. Harly C, Guillaume Y, Nedellec S, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human $\gamma\delta$ T-cell subset. Blood 2012;120:2269–79. Full Text
- 13. Di Marco Barros R, Roberts NA, Dart RJ, et al. Epithelia use butyrophilin-like m olecules to shape organ-specific $\gamma\delta T$ cell compartments. Cell 2016; 167:203–18 e17.
- 14. Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of $\gamma\delta T$ cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2014;47:311–33. Full Text
- 15. Giacomelli R, Matucci-Cerinic M, Cipriani P, et al. Circulating Vdelta1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum 1998;41:327–34. <u>Full Text</u>
- 16. White B, Yurovsky VV. Oligoclonal expansion of V delta 1+ gamma/delta T-cells in system ic sclerosis patients. Ann N Y Acad Sci 1995;756:382–91. <u>Full</u> <u>Text</u>
- 17. Ercole LP, Malvezzi M, Boaretti AC, Utiyama SR, Rachid A. Analysis of lymphocyte subpopulations in systemic sclerosis. J Investig Allergol Clin Im munol 2003;13:87–93.
- Bendersky A, Marcu-Malina V, Berkun Y, et al. Cellular interactions of sy novial fluid gammadelta T cells in juvenile idiopathic arthritis. J Immunol 2012;188:4349–59. <u>Full Text</u>
- Markovits N, Bendersky A, Loebstein R, Brusel M, Kessler E, Bank I. Anti-fibrotic characteristics of Vγ9+ γδ T cells in systemic sclerosis. Clin Exp Rheumatol 2016 Feb 9. [Epub ahead of print].
- 20. Ohtsuka T. Effect of gammadelta T cell supernatant on hum an skin fibroblast proliferation and collagen production—possible role of transforming growth

factor-beta and basic fibroblast growth factor. Int J Dermatol 2008;47:1135–40. <u>Full Text</u>

- 21. Ueda-Hay akawa I, Hasegawa M, Hamaguchi Y, Takehara K, Fujimoto M. Circulating $\gamma/\delta T$ cells in systemic sclerosis exhibit activated phenoty pe and enhance gene expression of proalpha2(I) collagen of fibroblasts. J Dermatol Sci 2013;69:54–60. Full Text
- 22. Gruschwitz MS, Moormann S, Kromer G, et al. Phenotypic analysis of skin infiltrates in comparison with peripheral blood lymphocytes, spleen cells and thymocytes in early avian scleroderma.J Autoimmun 1991;4:577–93. <u>Full Text</u>
- 23. Braun RK, Sterner-Kock A, Kilshaw PJ, Ferrick DA, Giri SN. Integrin alpha E beta7 expression on BAL CD4+, CD8+, and gamma delta T-cells in bleomycininduced lung fibrosis in mouse. Eur RespirJ 1996;9: 673-9. <u>Full Text</u>
- 24. Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17 A dependent. J Exp Med 2010;207:535–52. Full Text
- 25. Gasse P, Riteau N, Vacher R, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 2011;6:e23185. <u>Full Text</u>
- 26. Nakama K, Miyazaki Y, Nasu M. Immunophenotyping of lymphocytes in the lung interstitium and expression of osteopontin and interleukin-2 mRNAs in two different murine models of pulmonary fibrosis. Exp Lung Res 1998;24:57–70. Full Text
- 27. Braun RK, Martin A, Shah S, et al. Inhibition of bleomycin-induced pulmonary fibrosis through pretreatment with collagen type V. J Heart Lung Transplant 2010;29:873–80. <u>Full Text</u>
- 28. Braun RK, Ferrick C, Neubauer P, et al. IL-17 producing gammadelta T cells are required for a controlled inflammatory response after bleomycininduced lung injury. Inflammation 2008;31:167–79. <u>Full Text</u>
- 29. Pociask DA, Chen K, Choi SM, Oury TD, Steele C, Kolls JK. γδT cells attenuate bleomy cin-induced fibrosis through the production of CXCL10. Am J Pathol 2011;178:1167–76. <u>Full Text</u>
- 30. Liang M, Wang J, Chu H, et al. Interleukin-22 inhibits bleomy cin-induced pulmonary fibrosis. Mediators Inflamm 2013;2013:209179. Full Text
- Oh K, Seo MW, Kim YW, Lee DS. Osteopontin potentiates pulmon ary inflammation and fibrosis by modulating IL-17/IFN-γ-secreting T-cell ratios in bleomycin-treated mice. Immune Netw 2015;15:142– 9. Full Text

- 32. Davis GS, Holmes CE, Pfeiffer LM, Hemenway DR. Lymphocytes, lymphokines, and silicosis. J Environ Pathol Toxicol Oncol 2001;20(Suppl 1):53–65. <u>Full</u> <u>Text</u>
- 33. Lo Re S, Dumoutier L, Couillin I, et al. IL-17A-producing gamma delta T and Th17lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. J Immunol2010;184:6367-77. Full Text
- 34. Ekstrand-Hammarstrom B, Wigenstam E, Bucht A. Inhalation of alkylating mustard causes long-term T cell-dependent inflammation in airways and growth of connective tissue. Toxicology 2011;280:88–97.<u>Full</u> <u>Text</u>
- 35. Simonian PL, Roark CL, Wehrmann F, et al. IL-17Aexpressing T cells are essential for bacterial clearance in a murine model of hypersensitivity pneumonitis. J Immunol 2009;182:6540–9. <u>Full Text</u>
- 36. Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP. γδT cells protect against lung fibrosis via IL-22. J Exp Med 2010;207:2239– 53. <u>Full Text</u>
- 37. Hernandez-Pando R, Orozcoe H, Sampieri A, et al. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Im munology 1996;89:26–33.
- 38. Wangoo A, Johnson L, Gough J, et al. Advanced granulomatous lesions in My cobacterium bovisinfected cattle are associated with increased expression of type I procollagen, gammadelta (WC1+) T cells and CD 68+ cells. JComp Pathol 2005;133:223-34. Full Text
- 39. Kim DS, Lee KY, Yang WI, Han SJ, Hwang EH. Gamma/deltaTlymphocytes in the BCG granulo-

m atous lesions. Yonsei Med J 1996;37:319–24. <u>Full</u> <u>Text</u>

- 40. Hammerich L, Bangen JM, Govaere O, et al. Chemokinereceptor CCR6-dependent accumulation of $\gamma\delta$ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014;59:630–42. Full Text
- 41. Meeusen E, Lee CS, Rickard MD, Brandon MR. Cellular responses during liver fluke infection in sheep and its evasion by the parasite. Parasite Immunol 1995;17:37–45. <u>Full Text</u>
- 42. Waters WR, Wannemuehler MJ, Sacco RE, et al. Cryptosporidium parvum-induced inflam matory bowel disease of TCR-beta-xTCR-delta-deficient mice. J Parasitol 1999;85:1100–5. <u>Full Text</u>
- 43. Klemann C, Schroder A, Dreier A, et al. Interleukin 17, produced by $\gamma\delta$ T cells, contributes to hepatic inflammation in a mouse model of biliary atresia and is increased in livers of patients. Gastroenterology 2016;150:229–41 e5.
- 44. Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013;139:523–32. <u>Full Text</u>
- 45. Workalemahu G, Foerster M, Kroegel C. Expression of metalloproteinase-7 (matrilysin) in human blood and bronchoalveolar gamma/deltaT-lymphocytes. Selective upregulation by the soluble non-peptidic mycobacterial phosphoantigen (isopentenyl py rophosphate). J Cell Physiol 2006;207:67–74. <u>Full Text</u>