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ABSTRACT 

Epidemiologic studies now strongly support the hypothesis, proposed over two decades ago, that 
developmental programming of the kidney impacts an individual’s risk for hypertension and renal 
disease in later life. Low birth weight is the strongest current clinical surrogate marker for an adverse 
intrauterine environment and, based on animal and human studies, is associated with a low nephron 
number. Other clinical correlates of low nephron number include female gender, short adult stature, 
small kidney size, and prematurity.  Low nephron number in Caucasian and Australian Aboriginal sub-
jects has been shown to be associated with higher blood pressures, and, conversely, hypertension is less 
prevalent in individuals with higher nephron numbers. In addition to nephron number, other pro-
grammed factors associated with the increased risk of hypertension include salt sensitivity, altered 
expression of renal sodium transporters, altered vascular reactivity, and sympathetic nervous system 
overactivity. Glomerular volume is universally found to vary inversely with nephron number, suggesting 
a degree of compensatory hypertrophy and hyperfunction in the setting of a low nephron number. This 
adaptation may become overwhelmed in the setting of superimposed renal insults, e.g. diabetes mellitus 
or rapid catch-up growth, leading to the vicious cycle of on-going hyperfiltration, proteinuria, nephron 
loss and progressive renal functional decline. Many millions of babies are born with low birth weight 
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every year, and hypertension and renal disease prevalences are increasing around the globe. At present, 
little can be done clinically to augment nephron number; therefore adequate prenatal care and careful 
postnatal nutrition are crucial to optimize an individual’s nephron number during development and 
potentially to stem the tide of the growing cardiovascular and renal disease epidemics worldwide. 

KEY WORDS: Low birth weight, nephron number, developmental programming, hypertension, renal 
disease, kidney size 

 

In 1988, Brenner, Anderson, and Garcia suggested 
that a low nephron number, acquired in utero, 
may be a common denominator in populations 
with high susceptibility to hypertension and renal 
disease.1 Such a kidney with fewer nephrons, and 
hence a low filtration surface area, would have a 
reduced capacity to excrete sodium, inducing a 
hypervolemic state, thereby contributing to the 
development of hypertension (Figure 1). Animal 

experiments and epidemiological data have accu-
mulated in support of this “nephron number” hy-
pothesis.2–8 Nephron number varies surprisingly 
widely among individuals, more, for example, 
than height or weight, with a variability of up to 
10-fold within select populations.5,6,9–17 An indi-
vidual’s nephron number is the result of a complex 
interplay between genetics and environment that 
plays out through their lifetime, carrying the 

 

Figure 1. Known causes of low nephron number. 

Schematic diagram outlining the known causes of low nephron number, derived from human and animal 

studies, current clinical surrogate markers for low nephron number, and clinical consequences of low nephron 

number, reduced filtration surface area, and abnormal glomerular development. 
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imprint of their past, being reflected in their pre-
sent renal function, and impacting their future 
risk of hypertension and kidney disease. 

DETERMINANTS OF NEPHRON NUMBER 

Prenatal Life and Birth Weight 

Kidney development in humans begins in the 9th 
week and ends around the 36th week of gestation.5 
There is no evidence for postnatal nephrogenesis 
in humans, except in extremely preterm infants in 
whom abnormal nephrogenesis was observed until 
day 40 after birth.16,18 Similarly, in preterm 
baboons followed for 21 days after birth, nephro-
genesis did continue, but the proportion of 
immature, poorly vascularized and abnormal 
glomeruli was increased compared to gestational 
controls.19 In young adult rats exposed to a low 
protein diet in utero, glomerulogenesis was 
retarded with a higher proportion of immature 
nephrons, associated with abnormalities in the 
glomerular basement membrane and podocyte 
structure.20 These authors postulate that such 
subtle structural abnormalities programmed early 
on may increase susceptibility to on-going renal 
injury.  

Numerous studies have investigated events and 
changes during pregnancy that lead to reduced 
nephron number, including maternal diets defi-
cient in protein, iron, or vitamin A, uterine artery 
ligation, maternal hyperglycemia, prenatal expo-
sure to glucocorticoids and drugs such as 
gentamycin, cyclosporin, β-lactams, ethanol, and 
cox2 inhibitors.21–36 Many of these interventions 
also result in low birth weight (LBW) offspring. 

The World Health Organization defines LBW 
as a birth weight under 2,500 g; thus an infant can 
have a LBW by being born premature (before the 
37th week of gestation), although at an 
appropriate weight for gestational age (AGA), or 
due to intrauterine growth restriction (IUGR) 
during a term pregnancy.37 A small for gestational 
age infant (SGA) is defined as weighing less than 
the 10th percentile of the normal weight for 
gestation.37 Risk factors for LBW are many: in the 
Third World mostly related to maternal 
malnutrition, inadequate prenatal care, infections, 
etc., and in the First World also related to higher-
risk pregnancies, prematurity, and advanced 
maternal age.37–40 Interestingly, maternal LBW in 

both whites and blacks in the US was a risk factor 
for infant LBW, prematurity, and IUGR, regard-
less of economic environment, demonstrating the 
impact of developmental programming across 
generations.41  

In humans, nephron numbers were found to be 
lower in neonates with LBW.12,16,42 Gestational age 
also correlates with nephron number, and pre-
maturity results in reduced nephron endowment.16 
In adults, nephron number has not been reported 
in those of LBW, but several studies have shown a 
strong direct correlation with birth weight across 
the normal birth weight range among Australian 
Aborigines, Caucasians, and people of African 
origin.11,12,16,43 One large study calculated an 
increase of 257,426 glomeruli per kilogram 
increase in birth weight.11 More human studies are 
required including diverse populations and a 
broad spectrum of birth weights to define further 
this relationship. 

At the other extreme, high birth weight (HBW), 
defined as a birth weight > 4,000 g, has also been 
associated with adverse long-term renal outcomes, 
although the relationship with nephron number in 
humans is not known.44,45 HBW is often the result 
of maternal hyperglycemia, and, in animals, off-
spring of diabetic dams have been found to have 
reduced nephron numbers.46–48  

Genetics 

Important pathways in nephrogenesis include 
GDNF/RET, FGF, PAX2, HH, and others which 
have been expertly reviewed elsewhere.49 Poly-
morphisms in several of these genes have been 
investigated in relation to kidney size and nephron 
number in humans. PAX2 has a wide range of 
functions in kidney development, and a common 
variant in the population, the AAA haplotype, 
reduces PAX2 mRNA expression and causes a 10% 
reduction in kidney volume.50,51 Similarly, RET is 
essential for branching nephrogenesis, and a 
polymorphic variant, RET1476A, is associated with 
an almost 10% reduction in kidney volume at 
birth.52 Kidney volume was found to be propor-
tional to nephron number in this study. Mutations 
in other genes such as Imx-1, Eya-1, Six1, Sall1, 
and tcf2 also result in a reduced nephron number, 
small kidney size, and disorganized renal tissue, in 
addition to other extrarenal manifestations.53 
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OTHER CLINICAL CORRELATES OF 

NEPHRON NUMBER 

Except for rough estimates of the nephron number 
by renal MRI or kidney biopsy, an accurate count 
can only be done post mortem.15,43,54 In humans, 
thus far, LBW and prematurity are the strongest 
clinical correlates of low nephron number. In 
animals, however, low nephron number has been 
reported in the absence of LBW, and, conversely, 
not all LBW animals have reduced nephron 
numbers; therefore birth weight alone may not be 
a universal surrogate marker for nephron num-
ber.55,56 Several additional clinical surrogates for 
nephron number have been examined (Figure 1), 
which, although not absolute, may also serve to 
increase awareness of the possibility of low 
nephron number, with the attendant risks for 
hypertension and renal disease, and may therefore 
impact on optimization of other risk factors.  

Anthropomorphic Factors 

Females are estimated to have 12% fewer 
glomeruli than males.43,57,58 Increasing age is 
associated with a predicted reduction of 3,676 
glomeruli per kidney per year after age 18.15,43 
Adult height has been found to correlate positively 
with nephron number, with an estimated increase 
of 28,000 glomeruli per centimeter increase in 
height, and height was found to contribute to two-
thirds of the variance in glomerular number.15,43,58 
Birth weight tends to be associated with 
subsequent height and therefore may be a 
confounder in this relationship, but adult height is 
much more readily available than birth weight in 
clinical practice and therefore useful.59 

Glomerular Volume 

Although nephron number does not increase after 
birth, the kidney matches its filtration capacity to 
the body’s demands by increasing the glomerular 
size through hypertrophy.5,11,12,57,58 As such, mean 
glomerular volumes have consistently been found 
to correlate inversely with glomerular number and 
directly with current body size.43 Keller et al. 
reported a 133% higher mean glomerular volume 
and a 46.6% reduction in glomerular number in 
hypertensive subjects, compared to controls.6 
Lower nephron number, black race, hypertension, 

and body size all correlate with an increase in 
individual glomerular volume within a single 
kidney.14,17,43 Larger glomeruli therefore suggest a 
lower nephron number, although in African-
Americans glomerular volume appears to be 
globally increased but still in inverse proportion to 
nephron number, suggesting additional factors 
contribute to glomerular size in this population.9 

Kidney Mass 

Kidney weight can only be measured ex vivo, but 
from autopsy studies, nephron number correlates 
directly with kidney weight in adults and 
children.15,52 Zhang et al. predicted an increase of 
23,459 glomeruli per gram of kidney mass (95% 
confidence interval 4,590–42,238) in infants 3 
months and younger.52 In living subjects, kidney 
mass is obtainable by weighing the donor kidney 
prior to transplantation and has proven to have 
clinical relevance (vide infra). 

Kidney Volume 

Kidney volume can be readily measured by 
ultrasound. Spencer et al. found relatively lower 
kidney volumes in LBW Australian Aboriginal 
children aged 5–18 when adjusted for body size.60 
In contrast, Rakow et al. did not find a significant 
difference between kidney volumes of individuals 
who had been term AGA, term SGA, or preterm, 
when adjusting for body surface area (BSA), 
gender, and age.61 Kidney size is dependent on 
nephron number and the degree of nephron 
hypertrophy and is strongly correlated with 
current body size.15 In fetuses and at birth, kidney 
volume is proportional to nephron number; 
however, subsequently, normal kidney growth 
(impacted by BSA, age, and gender), glomerulo-
megaly (hypertrophy due to low nephron number, 
obesity, etc.), and nephron loss through injury are 
likely to affect kidney volume disproportionately, 
making a direct relationship less clear.60 Among 
young adults born prematurely (either AGA or 
SGA) compared with term age-matched controls, 
prematurity was associated with smaller kidneys 
at age 20 years, whereas IUGR had only a small, 
non-significant effect.62 Kidney volume may 
therefore not be ideally reliable as a surrogate for 
nephron endowment. 
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CLINICAL CONSEQUENCES OF IMPAIRED 

DEVELOPMENTAL PROGRAMMING IN 

THE KIDNEY 

Nephron Number, Size, and Blood 

Pressure 

In adult animals, surgical removal of one kidney 
under varying circumstances and in different spe-
cies does not always result in spontaneous hyper-
tension and renal disease.63 In contrast, however, 
uni-nephrectomy on postnatal day 1 in rats, or 
fetal uni-nephrectomy in sheep, i.e. loss of neph-
rons at a time when nephrogenesis is still on-
going, does lead to adult hypertension prior to any 
evidence of renal injury.64–66 These data support 
the possibility that intrauterine or congenital 
reduction in nephron number may elicit different 
compensatory responses compared to later 
nephron loss, augmenting the risk of hyper-
tension. Consistent with this view, kidneys from 
rats that underwent uni-nephrectomy at day 3 of 
age had similar total number but a greater propor-
tion of immature glomeruli in adulthood, 
compared with those who underwent nephrec-
tomy at day 120 of age.67 In addition, mean 
glomerular volume in neonatally nephrectomized 
rats was increased by 59% compared with 20% in 
adult nephrectomized rats, suggesting a greater 
degree of compensatory hypertrophy and hyper-
function in response to neonatal nephrectomy. 
One could argue that as the demand for filtration 
capacity highly depends on BSA and basal meta-
bolic rate, the increment in BSA from infancy 
through childhood and adulthood may impose a 
much greater strain on a smaller kidney early in 
life, which may demand different and more robust 
adaptation than during adulthood, when no 
growth occurs except for changes in weight.15 

Some suggest that when kidney growth is 
interrupted, fewer, yet normal, nephrons develop. 
Others challenge this, as nephrogenesis is a highly 
complex and regulated process, and expect some 
structural and/or functional defects in addition to 
the reduced nephron number. This question is dif-
ficult to address, but in GDNF (glial cell-derived 
neurotrophic factor) heterozygous mice, a model 
with low nephron number and in which 20% of 
animals have unilateral renal agenesis, single 
kidney nephron numbers were found to be identi-
cal in mice born with one or two kidneys.68 
Although glomerular filtration rates (GFR) were 

similar, salt and water handling were different, 
suggesting possible alterations in nephron 
function in the mice with unilateral renal agenesis. 
In this model, a reduction in nephron number per 
se was not associated with elevated blood 
pressures, but when maintained on a high-salt diet 
GDNF-deficient mice became significantly 
hypertensive, and blood pressures were highest in 
those with fewest nephrons.68 This observation 
could be interpreted to suggest that a deficit in 
nephron number may in itself not be enough to 
result in disease but likely enhances susceptibility 
to a second “hit”, transforming subclinical into 
overt renal dysfunction.69  

The association between low nephron number 
and higher blood pressures has been demon-
strated in white adults and in Australian Abori-
gines but has not been proven among individuals 
of African origin.6,43,58,70 To our knowledge, the 
relationship has not been studied in other ethnic 
groups. Conversely, a higher nephron number 
appears to be protective in the Caucasian and 
Australian Aboriginal populations.17,43 Similarly, 
in some animal models restoration of nephron 
number has been found to abrogate the develop-
ment of hypertension, suggesting that nephron 
number is an important factor in the pathogenesis 
of hypertension.71–73  

Birth Weight Predicts Later Life 

Hypertension 

Since the 1980s, when the inverse correlation 
between LBW and hypertension was reported, 
numerous studies in humans and animals have 
supported this observation.2,36,74–79 It is important 
to note that in LBW children, blood pressures tend 
to be higher than those of normal birth weight 
children but are not in the hypertensive range, but 
with time blood pressures increase and LBW indi-
viduals become overtly hypertensive with age. 
Although preterm birth itself is associated with 
increased blood pressure, LBW for gestational age 
has been more strongly associated with higher 
blood pressures at birth and at 18 months of age 
than LBW of prematurity, suggesting that an 
adverse intrauterine environment is an important 
factor.80–82 Consistent with this, a recent Swedish 
study of 16,265 twins found a correlation between 
LBW and later life hypertension within dizygotic 
and monozygotic twin pairs, suggesting that 
individual fetal growth is an important factor, 
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independent of genetic background, impacting 
developmental programming of adult disease.83 
Not all studies confirm the association between 
birth weight and subsequent blood pressures, 
however.84–86 The relationship appears to be least 
consistent among US black children but is main-
tained in African and Caribbean black children, 
suggesting that genetic and/or environmental 
factors may be more pivotal in the US popu-
lation.75,77,78,87  

Importantly, reduced nephron number is not 
the only link between LBW and hypertension.3,88 
Salt sensitivity has also been shown to be 
associated with LBW in humans and in some 
animal models.68,89,90 Altered expression of renal 
sodium transporters and modulation of the renin–
angiotensin–aldosterone system have been shown 
in prenatally programmed animals, which may 
contribute to salt sensitivity.91–95 Consistent with 
this, in elegant studies Dagan et al. have shown 
increased tubule sodium transport to be a likely 
contributor to high blood pressure in adult 
animals that were exposed to maternal low-
protein diet or prenatal dexamethasone.96,97 
Additional proposed mechanisms for develop-
mental programming of blood pressure, studied 
mostly in animals but also in humans, include 
increased renal vascular reactivity, altered vascu-
lar reactivity, and increased sympathetic nervous 
system activity.33,98–102  

Birth Weight and Renal Outcomes 

Proteinuria 

Studies in various populations have shown 
increased urine protein excretion in subjects who 
had been of LBW, although the significance does 
not always persist when adjusted for additional 
risk factors, e.g. current HbA1c in diabetic 
youth.80,103 Among Australian Aborigines, albu-
minuria was found to correlate strongly with LBW 
and to increase dramatically with age.104,105 In this 
population, overt proteinuria was a significant 
predictor of loss of GFR, renal failure, and natural 
death.106,107 Among Pima Indians, a U-shaped 
association was found between birth weight and 
albumin excretion in diabetics, i.e. both LBW and 
HBW (largely due to gestational diabetes) cor-
related with increased albumin excretion.44 
Podocyte abnormalities have been described in 
LBW animals, which may play a role in the 

development of proteinuria.20,108 It is likely there-
fore that intrauterine programming of nephron 
development may be associated with increased 
risk of albuminuria.  

Measures of Renal Function  

A reduction in nephron number, in the absence of 
compensatory hyperfunction, would be expected 
to result in a lower total GFR and creatinine clear-
ance, and, indeed, in 1-day-old neonates born 
premature or SGA, GFRs were found to be im-
paired compared to normal birth weight neo-
nates.109 Lower GFR and higher serum creatinine 
were also found in LBW children, aged 6–12 years, 
compared with age-matched normal birth weight 
children.110 In contrast, however, no significant 
difference in GFR was found among three groups 
of 9–12-year-olds who had been either preterm, 
term SGA, or term AGA.61 Interestingly, in chil-
dren, GFR measured by cystatin C was found to 
correlate better with birth weight than creatinine-
based formulas, suggesting the validity of these 
formulas may need to be re-evaluated in LBW 
individuals.111,112 A positive correlation was found, 
however, between birth weight and creatinine-
based GFR in a cohort of young adults, born very 
premature.80 Using 24-hour urine creatinine 
clearance within adult twin pairs, GFRs were 
found to be lower in the LBW twin, again sug-
gesting an independent effect of the intrauterine 
environment on programming of renal function.113  

A small cross-sectional study compared total 
GFR, effective renal plasma flow, and filtration 
fraction before and after renal stimulation with 
low-dose dopamine infusion and oral amino acid 
intake in 20-year-olds born premature and AGA, 
premature and SGA, or term and AGA.114 It would 
be expected that a kidney with fewer nephrons is 
already hyperfiltering to some degree, which may 
abrogate any change in serum creatinine, but 
would have a blunted increase in GFR when 
stimulated further. This study was limited by 
small sample size, but the relative increase in GFR 
tended to be lower in SGA compared with AGA 
and control subjects, and effective renal plasma 
flow was lower in both SGA and AGA preterm 
individuals, although not statistically significant.115 
A recent study of non-diabetic young adults found 
a significant reduction in renal functional reserve 
in those with diabetic mothers (i.e. exposed to 
diabetic milieu in utero), compared to those with 
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diabetic fathers, thereby excluding a genetic 
confounder, and strongly suggesting a long-term 
impact of gestational diabetes exposure.114 The 
authors postulate that reduced renal functional 
reserve may reflect a programmed reduction in 
nephron number in offspring of diabetic mothers. 
Evaluation of renal functional reserve may there-
fore be a more sensitive method to detect subtle 
changes in renal function due to reduced nephron 
number.  

Chronic Kidney Disease 

A recent meta-analysis of 31 studies found a 70% 
increase in relative risk of chronic kidney disease 
(CKD) with LBW.116 A U-shaped curve for risk of 
CKD and birth weight (< 2.5 kg or ≥ 4.5 kg) among 
adult men, but not women, was found in a large 
US cohort.117 Many animal studies of fetal 
programming also report increased susceptibility 
to hypertension and renal dysfunction in males, 
although the reasons for the gender differences 
are not entirely clear.118 A retrospective study of 
over 2 million Norwegians reported a relative risk 
of end-stage renal disease (ESRD) of 1.7 in males 
and females born below the 10th percentile in 
weight, but only in females with birth weights > 
4.5 kg.119 A U-shaped curve was also described 
between birth weight and ESRD in both males and 
females in a predominantly black US popula-
tion.120  

Epidemiologic studies therefore support the 
relationship between high or low birth weights 
and risk of CKD. A relationship between nephron 
number and risk of CKD in humans, however, has 
not been directly studied. Hodgin et al. reported 
renal biopsy findings in six adults who had been 
born premature and LBW.121 They described con-
sistent findings of focal and segmental glomerulo-
sclerosis, associated with glomerulomegaly, most 
likely on the basis of a congenitally reduced 
nephron number. Nephron number per se, how-
ever, cannot be invoked as the sole cause of renal 
dysfunction in most patients. A kidney with a 
reduced nephron complement likely undergoes 
some degree of hyperfiltration, especially if body 
size and functional demand are high, and may 
have subtle structural abnormalities, both of 
which would enhance susceptibility, or reduce 
resistance, to additional renal injury or stress 
(Figure 1). Consistent with this possibility, LBW 
has been associated with poorer outcomes in 
patients with nephrotic syndrome, membranous 

nephropathy, IgA nephropathy, minimal change, 
and diabetic nephropathy.45,122–125 Abnormal glo-
merular adaptation and greater renal injury have 
also been shown in LBW animals with reduced 
nephron numbers.108,126 Suggested cellular and 
molecular mechanisms for the association be-
tween LBW and CKD in adult life include an 
imbalance between apoptosis and cell prolifera-
tion, accelerated senescence, and mitochondrial 
dysfunction.127  

Born Small – Stay Small! The Catch-up 

Effect 

The combination of LBW with a rapid increase in 
weight after birth amplifies the risks for hyper-
tension and cardiovascular disease in later life.128–

130 Rapid weight gain by as early as 2 weeks of age 
was associated with endothelial dysfunction in the 
same subjects 16 years later.131 The “thrifty pheno-
type hypothesis” states that in the event of a sub-
optimal intrauterine environment, embryonic and 
fetal adaptive responses limit fetal growth, result-
ing in a phenotype that is better suited to survive 
under adverse conditions, e.g. nutrient scarcity. 
These adaptive changes may become maladaptive 
when the postnatal environment offers better 
growth conditions, thereby enhancing the risk of 
hypertension and clinical renal disease.7,132 Animal 
models of LBW followed by accelerated postnatal 
growth have shown enhanced oxidative stress, 
telomere shortening, and accelerated senescence 
in kidneys, hearts, and aortas associated with 
premature death.133–136 Although more circum-
stantial, there is evidence pointing to accelerated 
senescence and increased oxidative stress in LBW 
humans consistent with “the dangerous road of 
catch-up growth”.137–140 

Nephron Dosing in Renal Transplantation 

In animal models of renal programming, e.g. 
maternal gestational low-protein diet or uterine 
artery ligation, offspring nephron numbers are 
generally reduced by 25%–30%, often resulting in 
adult hypertension and renal disease, suggesting 
that loss of a single kidney (i.e. 50% of nephrons) 
even in a normal individual, may carry similar 
risk.2,73 Indeed, long-term follow-up of 52 kidney 
donors over 10 years did find an increased risk of 
hypertension and proteinuria.141 Other reports, 
predominantly in white kidney donors, have re-
ported a lower risk of hypertension, proteinuria, 
and renal dysfunction, suggesting that uni-
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nephrectomy is safe.142–145 More recently, however, 
warning flags have been raised about the possibil-
ity of harm of living kidney donation in other eth-
nic groups. Among Australian Aboriginal kidney 
donors, after a median of 16 years, the incidence of 
hypertension, CKD, and ESRD was very high 
compared to Caucasian donors.143 Similarly, 
among Aboriginal Canadian donors, the preva-
lence of hypertension was significantly more fre-
quent than among Caucasians, with 100% of 
Aborigines having hypertension 20 years after 
donation.146 Estimated GFR was not different 
between populations in this study, however, 
although more Aboriginal donors had proteinuria. 
In US cohorts, hypertension and CKD were signifi-
cantly more prevalent among black compared to 
white donors.147,148 Uni-nephrectomy, therefore, 
does appear to carry some risk in populations 
known to be at increased risk of hypertension and 
kidney disease. These same populations generally 
have a higher prevalence of extremes of birth 
weight, low among Australian Aboriginal and US 
black populations and high in the Canadian 
Aboriginal population, suggesting that associated 
low nephron number may be a contributory factor 
to the increased renal risk post-nephrectomy.  

From the recipient’s point of view, the 
importance of nephron mass as an antigen-
independent determinant of transplant outcomes, 
i.e. matching kidney size to the recipient’s 
demand, has not always been accepted.149 In 
animal models, independent of immunologic 
barriers, transplanted nephron mass has a 
significant impact on allograft survival.150–152 In 
humans, various methods have been employed to 
try to assess the impact of kidney size, utilizing 
ratios of recipient to donor BSA or body weight, 
kidney volume to recipient BSA, and kidney 
weight to recipient weight, on transplant 
outcomes.153–158 Several caveats must be borne in 
mind when interpreting these data: BSA is not 
always proportional to kidney weight, and two 
kidneys of the same size may differ in nephron 
number. The evidence, however, despite the 
variability in methods, appears to be fairly 
consistent that small kidneys or kidneys from 
small donors transplanted into larger recipients 
tend to fare worse, supporting a role for nephron 
“dosing” in transplantation.153–158 

As with most clinical questions, a long duration 
of follow-up is necessary when looking for out-

comes that may take many years to manifest. Giral 
et al. previously published a cohort of renal allo-
graft recipients, with a mean of 32 months of 
follow-up, in whom they found no impact of graft 
weight on short-term graft survival.159 In their 
longer-term study, however, they used a donor 
kidney weight to recipient body weight (DKW/ 
RBW) ratio of 2.3 to stratify recipients into two 
groups.160 The low DKW/RBW group showed a 
greater adaptive increase in GFR during the first 6 
months post-transplant, which remained stable 
for 7 years but then declined faster after 7 years 
compared to the high DKW/RBW group. This 
observation suggests initial hyperfiltration in the 
smaller kidneys, which could not be sustained 
after 7 years, likely due to on-going nephron loss, 
as reflected in more proteinuria, more antihyper-
tensive drug use, a greater degree of glomerulo-
sclerosis, and a 55% increased risk for transplant 
failure by 2 years in the low DKW/RBW group. 
The authors conclude that incompatibility be-
tween graft and recipient weight is an independent 
predictor of long-term graft survival. These data 
strongly support the contention that nephron 
“dose”, relative to the recipient’s needs, should be 
an important consideration in organ allocation.  

Strategies for Optimization of Nephron 

Number 

Evidence is emerging that clinically feasible 
interventions, at a critical period of nephron 
development, can rescue nephron number and 
impact later life blood pressure. In rats, adequate 
postnatal nutrition, achieved by cross-fostering 
growth-restricted pups onto normal lactating 
females at birth, was found to restore nephron 
number and abrogate development of subsequent 
hypertension.73 Similarly, supplementation of 
maternal low-protein diet with glycine, urea, or 
alanine during gestation normalized nephron 
number in all rat offspring, although blood 
pressure was only normalized in those supple-
mented with glycine.71 Postnatal hypernutrition in 
normal rats was found to increase nephron 
number by 20%, but these rats went on to develop 
hypertension and glomerulosclerosis with age, 
likely as a result of obesity.72 Vitamin A deficiency 
has been shown to reduce nephron number in a 
dose-dependent manner, but encouragingly a 
single dose of retinoic acid, administered during 
early nephrogenesis, was enough to restore 
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nephron numbers to levels of control rats in pups 
exposed to a low-protein diet in utero.30,161 
Interestingly, administration of ouabain was also 
found to abrogate the effect of serum starvation 
and low-protein diet on nephron development in 
vitro and in vivo again in rats.162 Although still 
preliminary, taken together, these studies suggest 
possible mechanisms whereby nephron numbers 
could be rescued if at-risk fetuses were identified 
early enough. Likewise, avoidance or judicious use 
of drugs during pregnancy, that are known to 
impact kidney development as described above, 
are another means to optimize fetal nephron 
number.21–30,32–34,36,163–165 

CONCLUSION 

The idea that low nephron number may have a 
long-term impact on an individual’s later life risk 
of hypertension and renal disease has now entered 
the main stream. Until we learn more about 
developmental programming in nephrology, LBW 
should be used as the most useful current clinical 
surrogate for low nephron number and inborn risk 
of hypertension and renal disease. It is not sur-
prising that nephron number and LBW are not the 
whole story, however. Other factors such as glo-
merular size, expression of sodium transporters, 
vascular reactivity, and high birth weight are also 
all important contributors and deserve more 
investigation. The demonstration that nephron 
numbers can be restored with timely intervention 
in experimental models points to plasticity within 
the system, making identification of individuals at 
risk and development of therapeutic tools even 
more urgent and compelling. Until such tools are 
developed, current evidence calls for optimization 
of perinatal care and early childhood nutrition as 
important strategies to help stem the growing 
epidemics of renal and cardiovascular disease in 
future generations. 
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