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ABSTRACT 

Heart valve diseases are common disorders with five million annual diagnoses being made in the United 
States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to 
restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart 
valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on 
the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve 
treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will 
potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual 
enhancements in the procedural techniques and imaging modalities, could improve the quality of life of 
patients suffering from valvular disease who currently cannot be treated. 
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INTRODUCTION 

Heart valve diseases are common disorders with five 
million annual diagnoses in the United States alone. 
In general, these diseases can cause any of the four 
heart valves to malfunction, mostly as a result of ste-
nosis or regurgitation, and they can only be treated 
by surgical or transcatheter interventions. Obvious-
ly, any heart valve disorder alters its hemodynamic 
performance; therefore, treatments are aimed at 
restoring blood flow to healthy conditions. This 
paper reviews the current valvular treatments from 
an engineering perspective, with a focus on hemody-
namics. This review is inspired by Professor Rafael 
Beyar’s contributions to cardiac treatments based on 
engineering principles, his aspiration for research-
based innovation,1,2 and his early research on com-
putational simulations. This review will focus first 
on the aortic valve, which has been extensively stud-
ied and has the most substantial clinical experience 
with treatment devices. We will then review the 
latest advancement for the other valves of the heart. 
This review will conclude with a look at prosthetic 
valves and the hemodynamic standards to which 
they must comply. 

THE AORTIC VALVE 

There are two main acquired aortic valve disorders, 
both of which affect cardiac hemodynamics. Aortic 
root aneurysm is usually the cause of aortic insuf-
ficiency, where the valve leaflets cannot fully coapt. 
Aortic stenosis, on the other hand, is most common-
ly a result of calcific aortic valve disease (CAVD). 
Among the congenital disorders, bileaflet aortic valve 
is the most common. From a hemodynamic perspec-
tive, insufficiency is due to a regurgitating valve; 
hence, the preferred treatment is surgical valve-
sparing. This treatment provides physiologic hemo-
dynamic conditions that have a much lower throm-
bogenic risk than prosthetic valves.3 However, the 
only treatment for the much more commonly occur-
ring CAVD is valve replacement with a prosthetic 
valve.4,5  

Currently, two types of surgical prosthetic valves 
are available: mechanical and bioprosthetic (Figure 
1, left panel). Mechanical valves are very durable 
and can be used in artificial hearts10; however, their 
main disadvantage is thrombus formation due to 
non-physiologic hemodynamics. Bioprosthetic valves, 
on the other hand, mimic the native valve function, 
thereby eliminating the long-term anticoagulation 
requirement,11 but they have limited durability com-

pared with mechanical valves. Nevertheless, in 
recent years the American Heart Association, 
American College of Cardiology, European Society of 
Cardiology, and the European Association for Cardio-
Thoracic Surgery have updated their guidelines and 
lowered the recommended patient age for biopros-
thetic valves.12 One rationale for this change is the 
extensive use of transcatheter aortic valve implanta-
tion (TAVI) and the ability to treat bioprosthetic 
valve failure with a valve-in-valve (ViV) proce-
dure,13,14 thereby avoiding repeated open heart 
surgery. An additional option for rapid deployment 
of surgical bioprosthetic valves is the use of suture-
less aortic valves15; however, these valves may in-
crease the risk for complications that are usually 
associated with TAVI (described in the next section). 

The flexible polymeric valve is a developing 
technology that may potentially combine the 
strengths of the mechanical and bioprosthetic valves, 
resulting in physiological hemodynamics with high 
durability. Moreover, this type of valve can be more 
cost-effective than a bioprosthetic valve since it will 
have a lower rejection rate during the manufactur-
ing process.16,17 There is a long history of attempts to 
develop polymeric valves, which failed to receive 
regulatory approval.18 Nevertheless, several such 
devices are currently being developed and have 
demonstrated promising experimental results.16,19–22 
However, even if polymeric valves do achieve the 
hemodynamic capabilities of current bioprosthetic 
valves—with the durability of mechanical valves—
their inability to grow makes them problematic for 
pediatric use. Tissue-engineered heart valves may, 
potentially, be able to adjust to both tissue growth 
and remodeling, therefore ensuring prolonged dura-
bility.23 While tissue-engineered heart valves have 
been tested in limited clinical studies since the be-
ginning of the 2000s,23 there is still a need for basic 
understanding on the tissue process, as well as the 
outcomes and mechanical function, before this tech-
nology can undergo regulatory approval.24 These 
two developing technologies are presented in the 
right panel of Figure 1. 

TRANSCATHETER AORTIC VALVE 

IMPLANTATION 

Transcatheter aortic valve implantation is an alter-
native to surgical aortic valve replacement (SAVR). 
A stented bioprosthetic valve is delivered via cath-
eterization and deployed inside the stenotic native 
valve.25,26 In the latest generation of devices, the 
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only US Food and Drug Administration (FDA)-
approved TAVI devices are the balloon-expandable 
Sapien 3 Ultra (Edwards Lifesciences Corp., Irvine, 
CA, USA), the self-expandable Evolut Pro (Medtron-
ic, Minneapolis, MN, USA), and the self-expandable 
and mechanically locked Lotus Edge (Boston Scien-
tific, Marlborough, MA, USA).27 In addition to these 
three devices, numerous other TAVI devices (in-
cluding the Portico from Abbott, the Acurate Neo 
from Boston Scientific, and JenaValve’s device) have 
received Conformité Européenne (CE) marks16; 
however, most of them have been discontinued. 
While each of the various CE-marked devices has its 
own advantages, these advantages are usually 
related to aspects other than valve hemodynamics. 
Although TAVI was originally approved for only 
high-risk surgical patients, it is now approved for 
low-risk surgical patients.28 This recent change 
could increase the annual number of TAVI proce-
dures from 180,000 to 270,000 in Europe and 
North America.29 In addition to the classical use of 
TAVI in CAVD, both self-expanding and balloon-
expandable TAVI devices are FDA-approved for ViV 

implantation.30 However, the suture ring of the 
SAVR makes it narrower than the native root, and 
inserting a TAVI reduces the orifice area of the valve 
even more, thereby harming hemodynamic perform-
ance.31 Additionally, some of the TAVI complications 
are more common in ViV (discussed in the next 
section). Transcatheter aortic valve implantation is 
also being used in bileaflet aortic valve patients at 
high surgical risk, although such use has not yet 
been approved for this population.32 The risk of 
various hemodynamic complications is also higher 
than in CAVD patients, due to the non-circular ana-
tomical shape of the aortic valve in these patients. 

Hemodynamic Complications 

The new-generation TAVI devices demonstrates a 
vast decrease in complications; however, the exis-
tence of some adverse outcomes remains a concern  
due to the shift toward use in lower-risk patients.31 
Some of these complications include conduction 
abnormalities (necessitating permanent pacemaker 
implantation), coronary artery obstruction (CAO), 
paravalvular leak (PVL), and valve thrombosis.31 The 

 

Figure 1. Available (Left) and Under Development (Right) Prosthetic Aortic Valve Technologies. 

Photographs adapted and modified from Figure 5 of Spühler et al.6 [CC BY 4.0], Figure 1 of Capelli et al.7 [CC BY 

4.0], Figure 6 of Ghanbari et al.8 [CC BY-NC 3.0], and Figure 1 of Sanders et al.9 [CC BY 4.0]. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by/4.0/
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two last-mentioned are direct hemodynamic compli-
cations. 

Paravalvular leak 

Paravalvular leak is a leakage through the gaps be-
tween the implanted stent of TAVI devices and the 
native valve (Figure 2). This adverse hemodynamic 
outcome has been significantly minimized in the 
latest-generation devices, from a prevalence in 
patients of 25% to 5%.16 This reduction was achieved 
by adding an outer skirt or cuff that covers the ven-
tricular portion of the stent. In the original Sapien 3 
valve, the outer skirt included openings that created 
pockets that could fill with blood, thereby sealing 
the paravalvular gaps.16 This design was later refined 
in the Sapien 3 Ultra valve by increasing the outer 
skirt height, closing the pockets, and adding texture 
to the polyethylene terephthalate fabric. While the 
latest self-expandable devices also have an outer 
skirt, they can seal the gaps with an optimized 
anatomical fitting, specifically by having a larger 
stent diameter on the ventricular side than in the 
valve region. In addition to design improvements in 
the latest devices, if aortic regurgitation (AR) is 
found immediately following implantation, PVL is 
minimized by post-dilation with ballooning. These 
advances significantly reduced the incidence of AR 
post-TAVI; however, moderate-to-severe AR is still 
much more frequent compared to SAVR.35 Since 
PVL is a very patient-specific complication, from an 
engineering point of view, it is more useful to evalu-
ate it with computational fluid dynamics (CFD) than 
with bench experiments.36 In CFD, the basic equa-

tions that describe the flow of a fluid are solved by 
computational software. Therefore, CFD enables vir-
tual replication of procedural options that cannot be 
tested in vitro for specific patients. Several studies 
have used CFD37–41 and fluid-structure interaction,42 
where the fluid dynamics equations are coupled with 
solid mechanics models, to estimate PVL. This is 
also one of the features of a commercial service for 
pre-procedural planning based on patient-specific 
scans, as described below (Patient-specific Pre-
procedural Planning Based on Numerical Models). 

Thrombogenicity 

Hemodynamics is one of the main contributing fac-
tors for thrombosis.43,44 Exposure of platelets to ele-
vated flow stresses and platelet adhesion in stagnant 
flow regions are considered the two main mechani-
cal causes of thrombogenicity.45,46 In heart valves, 
these two factors, along with non-hemodynamic fac-
tors like hemocompatibility, can cause leaflet throm-
bosis or thromboemboli. In mechanical valves, the 
main concern is thrombus formation resulting from 
disturbed flow and elevated shear stress in the 
regurgitant flow through the narrow gaps. While it is 
true that the narrow gaps in PVL around TAVI can 
also cause this type of thrombus formation,40,47 obvi-
ously the leakage itself is usually a bigger concern 
than the thrombosis and constitutes the rationale 
behind performing post-TAVI dilation. On the other 
hand, blood flow stagnation in the valvular region is 
the suggested cause of leaflet thrombosis in TAVI, 
both in clinical studies48 and based on in vitro par-
ticle image velocimetry (PIV) measurements of the 

 

Figure 2. Paravalvular Leak Post-Transcatheter Aortic Valve Implantation (TAVI). 

Schematic description of paravalvular leak with examples of how it is seen in echo-Doppler images (adapted from 

Figure 3 of Di Martino et al.33 [CC BY 4.0] and Figure 14 of Sordelli et al.34 [CC BY-NC-SA]). 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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flow velocity vector field (Figure 3).50,51 Specifically, 
leaflet thrombosis is the assumed reason for reduced 
leaflet motion,52 as a result of hypoattenuated leaflet 
thickening.53 The prevalence of leaflet thrombosis 
remains unknown since cases that have not been 
diagnosed clinically have been discovered in patho-
logical valve studies,48 but frequencies of 16% in 
Sapien 3, 8% in Evolut, and 14% in Lotus TAVI 
devices as compared with 4% in SAVR patients have 
been suggested.52 Additionally, the occurrence of 
leaflet thrombosis post-ViV placement was reported 
to be six times the occurrence of leaflet thrombosis 
post-TAVI in native valve.54 

Several attempts have been made to study the 
hemodynamic causes of hypoattenuated leaflet thick-
ening by engineering methods, both experimental 

and numerical. Experimental studies compared the 
native valve to TAVI,50 surgical valve to ViV51 with 
idealized geometry, or surgical valve to ViV with com-
mercial valves.55 Numerical studies that compared 
surgical valve to ViV56–58 by CFD with prescribed 
leaflets motion also employed idealized geometry 
that were experimentally measured.57,58 All these 
studies demonstrated that valve confinement, where 
the TAVI valve is surrounded by the previous leaflets 
of the native or the degenerated SAVR valve, can 
increase the blood residence time near the leaflets. 
Therefore, supra-annular implantation, like in Evolut 
(where the TAVI valve is only partially confined), is 
expected to have a lower thrombogenic risk than a 
fully confined valve, such as the intra-annularly 
implanted Sapien.58 A recently proposed method to 
address CAO is to lacerate the leaflets of the bio-

 

Figure 3. Flow Stasis Post-Transcatheter Aortic Valve Implantation (TAVI) and Leaflet Thickening That Indicates 

Thrombosis Location. 

Schematic description of potential stasis (A). Leaflet thickening as seen in both CT (B) and volume-rendered 4D-CT 

scans (C). Blood velocity magnitude as measured from in vitro experiment that represents native aortic valve (D) 

and post-TAVI (E). Blue shades represent stagnation (low velocities). CT scans and experimental results are adapted 

from Figure 2 of Rosseel et al.49 [CC BY 4.0] and Figure 5 of Ducci et al.50 [CC BY 4.0]. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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prosthetic valve by a technique known as BASILICA 
(bioprosthetic or native aortic scallop intentional 
laceration to prevent coronary artery obstruction)59 
(see below, Hemodynamics of structural complica-
tions). In addition to the original intention of this 
technique, engineering studies suggest that the 
laceration can allow better washout and reduce the 
flow stagnation in the valvular region, thus leading 
to lower thrombogenic risk.60,61  

Hemodynamics of structural 

complications 

In addition to these two direct hemodynamic com-
plications, the other TAVI complications also affect 
blood flow. Coronary artery obstruction obviously 
has a major effect on coronary hemodynamics. It is 
more common in ViV cases than in classical TAVI, 
and is related the to the surgical valve design, with a 
complication rate of up to 5.3% for externally 
mounted surgical valves.62,63 Patients suspected of 
being at risk for CAO, based on pre-procedural 
imaging, should be protected pre-emptively by 
“chimney” stenting.64 An alternative to chimney 
stenting is the BASILICA technique59 where the 
laceration directly prevents obstruction. While CAO 
risk is currently evaluated based only on the ana-
tomic location of the coronary ostia, numerical mod-
els can help to quantitatively assess flow dynam-
ics.65,66 The circularity and size of the valve orifice 
can be highly dependent on patient anatomy, es-
pecially with self-expandable TAVI devices. Clearly, 
it is undesirable to have a non-circular valve, and 
this phenomenon has been generally been addressed 
by the supra-annular design of the TAVI device.16 
Finally, valve embolization (migration) exemplifies 
structural complications due to hemodynamics. 
While it is relatively rare (occurrence as low as 
0.5%)67 and considered a consequence of insuffi-
cient anchoring, valve embolization is a direct result 
of the diastolic blood pressure pushing the valve into 
the ventricle. Recently, we suggested that BASILICA 
can weaken anchorage forces, although our study 
did not indicate that it was weakened enough to 
cause migration.68 Stronger anchoring forces, for 
example by over-inflating the balloon-expandable 
device, can obviously help prevent migration. Never-
theless, these approaches can cause additional non-
hemodynamic complications such as conduction 
abnormalities (necessitating permanent pacemaker 
implantation) or even aortic root rupture. 

Patient-specific Pre-procedural Planning 

Based on Numerical Models 

In recent years, several numerical models have been 
approved for patient-specific procedural planning in 
various medical treatments.69 The FEops HEART-
guide (FEops nv, Gent, Belgium) is a CE-marked 
service for making pre-interventional TAVI device 
size and position recommendations based on patient-
specific numerical models. The recommendations 
are based on both finite element analysis of the im-
plantation70 and CFD analysis of the post-
procedural PVL.37 To utilize this service, clinicians 
send routine computed tomography (CT) scans of 
the patient to the company. The company then 
reconstructs the cardiac anatomy, generates and 
runs the finite element analysis and CFD simula-
tions, and provides a report on the results of several 
scenarios within two working days. Since the first 
presentation of this tool, numerous studies have 
demonstrated its clinical usage including for im-
plantation in bicuspid aortic valves,71–73 and the use 
of TAVI in the mitral location with native calcified 
valves74,75 and inside a failed bioprosthetic valve.76 
Use of the FEops HEARTguide has also been 
expanded to additional TAVI devices,77 device opti-
mization,78 and also for procedural recommendations 
based on additional possible complications, such as 
conduction abnormalities.79 From a hemodynamic 
perspective, the most important capability of this 
tool is obviously calculation of PVL (Figure 4), 
which demonstrated good predictions in a clinical 
study of 60 patients.37 On the other hand, in a study 
that used the FEops HEARTguide to compare 
coronary flow with several TAVI orientations,38 
there was no difference between the flow results in 
the various cases. 

THE MITRAL VALVE 

Mitral valve regurgitation (MVR) is a leakage due to 
improper closure of the valve. It is the most com-
mon valvular heart disease with a prevalence of 
approximately 1.7% in the adult population.81 Due to 
its increased prevalence with age and the growing 
aging population, the number of cases in the year 
2030 is expected to be almost double that of the year 
2000.82 Mitral valve regurgitation is caused by 
either a valve prolapse (primary MVR, due to a de-
generative abnormality of the leaflets, chordae 
tendineae, papillary muscles, or the mitral annulus) 
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or a left ventricular dysfunction (secondary or func-
tional MVR).83 Current treatments include mostly 
surgical valve repair or replacement.84 Valve re-
placement involves replacing the native valve with a 
prosthetic one. Obviously, implantation orientation 
significantly influences the flow pattern, especially 
with mechanical valves, but it is less clear what the 
optimal orientation is.85 In a valve repair, the native 
valve remains in place, and the leaflets, chordae, and 
papillary muscle are manipulated to restore normal 
valve behavior with a stabilized annulus while pre-

serving the valve’s orifice size and left ventricular 
function.86,87 Repair techniques are based on an-
nuloplasty, resection, addition of artificial chordae, 
or a combination thereof.88,89 Annuloplasty, with 
either rigid or flexible rings or bands, is necessary in 
most repairs.90 Valve repair is recommended for 
patients with primary MVR90 since the repair has a 
low mortality rate91 and it improves ventricular 
function with no need for anticoagulation. However, 
there remains a risk of residual MVR and concerns 
regarding mitral valve repair durability.92  

 

Figure 4. Patient-specific Pre-procedural Paravalvular Leak Calculations. 

Examples of paravalvular leak calculations using the FEops HEARTguide. This platform can help minimize leakage by 

pre-selecting the optimal transcatheter aortic valve device and implantation location. Adapted from Figure 5 of El 

Faquir et al.80 [CC BY 4.0]. 

https://creativecommons.org/licenses/by/4.0/
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Unfortunately, the majority of severe MVR 
patients are not treated due to the high surgical risk, 
leading to considerable morbidity and mortality.93,94 
As a consequence, these patients can only be treated 
percutaneously. There is one such device that has 
been approved for MVR by the FDA, the MitraClip 
(Abbott Laboratories, Abbott Park, Illinois, USA). 
This transcatheter procedure involves the implanta-
tion of a clip that grasps both the anterior and the 
posterior leaflets of the mitral valve, mimicking 
surgical edge-to-edge valve repair that is done via 
open heart surgery.95 However, the procedural re-
sults are often suboptimal even in patients who meet 
the inclusion criteria, i.e. severely symptomatic sec-
ondary MVR patients.96 The Pascal system (Edwards 
Lifesciences Corporation, Irvine, CA), which is still 
in clinical trials, is another edge-to-edge valve repair 
device that aims to tackle some of these limitations 
by including wider paddles and a central spacer.97 
Other percutaneous CE-marked interventions are 
based on direct (Mitralign System, from Mitralign, 
Inc., Tewksbury, MA, USA; Cardioband, from Ed-
wards Lifesciences) and indirect (Carillon System, 
from Cardiac Dimensions, Inc., Kirkland, WA, USA) 
mitral annuloplasty.95,98 

Transcatheter mitral valve replacement (TMVR) 
is a potential alternative to surgical treatment for a 
wide range of pathologies that cannot currently be 
treated percutaneously.95 However, TMVR has 
unique challenges, such as the size and shape of the 
valve, lack of calcification deposits for anchorage, 
high hemodynamic pressures, and complex sub-
valvular apparatus. These challenges led to a limited 
clinical experience with such devices.93 A significant 
effort is being made to develop TMVR devices, with 
more than 10 currently at various stages of develop-
ment.99–101 These TMVR devices have several mech-
anisms for anchorage and sufficient sealing around 
the device. Unlike TAVI, the main anchoring chal-
lenge focuses on not applying strong radial forces, 
which can obstruct and damage the aortic valve.101 
Suggested TMVR anchoring mechanisms include 
counteracting axial forces by using ventricular 
tethers, native valve anchors, atrial and ventricular 
flanges, sub-annular hooks, atrial cages, and im-
plantation of a docking system. From a hemody-
namic perspective, all these anchoring mechanisms 
contribute to some flow disturbances. Nevertheless, 
flow through the valve itself should be similar to the 
flow through any other type of bioprosthetic valve. 
Another possible procedural complication with a 
direct hemodynamic effect is left ventricular outflow 

tract obstruction. For these cases, laceration of the 
anterior mitral leaflet to prevent outflow obstruc-
tion102,103 was suggested, a technique similar to 
using BASILICA in a TAVI. 

Several studies used engineering methods to 
experimentally study the hemodynamics of the 
mitral valve, including MVR before and after treat-
ment.104–106 Numerical methods have also been 
employed to model healthy and diseased mitral 
valves, before and after surgery.107–112 Both mitral 
annuloplasty113–118 and edge-to-edge procedures119–

121 have been modeled with finite element analysis to 
evaluate their effect on tissue stress, tension in the 
chordae tendineae, and hemodynamics. Most nu-
merical models of percutaneous MVR treatments 
focused on evaluating the commercially available 
MitraClip.105,119–122 Sturla et al.105 studied the effect 
of MitraClip implantation with both in vitro experi-
ments and numerical models. While hemodynamics 
was not modeled numerically, it was measured 
experimentally. Therefore, this study was able to 
find a correlation between the “dry” experimental 
results and hemodynamics. Kamakoti et al.122 pre-
sented numerical simulations of fluid structure 
interaction in the mitral valve post-MitraClip im-
plantation (Figure 5). Their main focus was 
regurgitation reduction using the MitraClip, and 
their results indicated the importance of the grasp-
ing location. While no study presented numerical 
simulations of TMVR devices, both Karady et al.74 
and Serban et al.75 described use of the FEops 
HEARTguide to model TAVI devices (the Lotus 
valve from Boston Scientific, and the Sapien 3 from 
Edwards Lifesciences, respectively) in the mitral 
location. In these cases, patients suffered from severe 
MVR and mitral valve stenosis with significant 
mitral valve annulus calcification. This specific 
pathology enabled the use of TAVI devices rather 
than a dedicated TMVR device. 

THE PULMONARY AND TRICUSPID 

VALVES 

The pulmonary and tricuspid valves are located in 
the outlet and inlet of the right ventricle. Obviously, 
the right ventricle has the same stroke volume as the 
left ventricle, but by exerting only one-fourth of the 
work and approximately one-sixth of the pressure.123 
While the vast majority of valvular heart diseases 
occur in the aortic and mitral valves, there is still a 
large unmet need for surgical and percutaneous 
treatments for patients with pulmonary and tricus-
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pid valve disorders. Treatments for these disorders 
need to properly function under the low hemody-
namic pressure gradients of the right heart.  

The two types of pulmonic disorders are stenosis, 
a relatively common congenital defect,81 and regur-
gitation, attributed to a variety of causes. While the 
gold standard treatment for pulmonic valve stenosis 
is balloon valvuloplasty, this treatment has long-
term complications of regurgitation and re-
stenosis.124 Severe regurgitation is treated by valve 
replacement, usually performed percutaneously. 
There are two FDA-approved devices for transcath-
eter pulmonary valve implantation: the Melody™ 
(Medtronic, Dublin, Ireland) and the Sapien XT 
(Edwards Lifesciences Corporation, Irvine, Califor-
nia, USA). Both devices are approved for patients 
with prosthetic valve regurgitation,125 while the 
Melody is also being implanted off‐label in native 
valves.126,127 While transcatheter pulmonary valve 
implantation was found to have high procedural 
success,125 there are still concerns regarding compli-
cations. While most of the complications are struc-
tural, damage to the tricuspid valve was recently re-
ported as a cause for tricuspid valve regurgitation.128 
Only a few engineering hemodynamics studies have 
focused on the pulmonary valve. Suzuki et al.129 
presented an in vitro experimental study of the 
hemodynamics in a polymeric pediatric pulmonary 
valve prosthesis. Capelli et al.130 used numerical 
models of patient-specific anatomies to predict the 
clinical outcomes of Melody valve implantation and 
found good agreement between their results and 
clinical fluid-dynamic parameters. Recently, Li et 

al.131 presented fluid–structure interaction models of 
pulmonary valve stenosis as a result of congenital 
bicuspid pulmonary valve. While the flow dynamics 
was modeled, most of their results focused on the 
geometrical differences between tricuspid and bicus-
pid configurations, and the only hemodynamically 
relevant finding was related to the geometric orifice 
area. 

Similar to the mitral valve, tricuspid regurgita-
tion can be treated by surgery, usually to reduce the 
annular dimensions, but it is recommended only in 
severe cases that do not have high surgical risk.96 
Percutaneous treatment of tricuspid regurgitation is 
highly desirable because most patients with 
moderate-to-severe regurgitation cannot be treated 
surgically.132 Several percutaneous devices and tech-
niques have been suggested for tricuspid treatments, 
some of which are based on adaptation of mitral 
valve repair. Several devices for transcatheter tricus-
pid annuloplasty are in development,132 including 
the Mitralign System,133 the 4Tech TriCinch™ 
(4Tech Cardio Ireland, Ltd, Galway, Ireland),134 and 
the transatrial intrapericardial tricuspid annulo-
plasty concept.135 Additionally, edge-to-edge repair 
of the tricuspid valve with the MitraClip device has 
also been suggested.136 Of these, engineering tools 
were used to evaluate only the post-procedural he-
modynamics after MitraClip implantation. Vismara 
et al.137 presented an experimental in vitro study 
that tested several procedural options for trans-
catheter edge-to-edge repair and found it to be a 
viable treatment for tricuspid valve regurgitation. 
They compared implantation of one or two clips and 

 

Figure 5. Comparison of Calculated Leakage in the Mitral Valve. 

A: Healthy mitral valve. B: Regurgitating mitral valve. C: Regurgitating mitral valve post-MitraClip shows significant 

leakage reduction. Adapted from Figure 5 of Kamakoti et al.122 [CC BY 4.0]. 

https://creativecommons.org/licenses/by/4.0/
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considered several combinations of clipped leaflets 
and clipping locations. They found that grasping 
should involve the septal leaflet to improve both 
cardiac output and pressure recovery, and that the 
clip should be in the middle rather than a com-
missural position. While the two-clip procedure was 
effective when grasping the septal and anterior leaf-
lets, there was no significant improvement compared 
with the single clip procedure. Recently, Dabiri et 
al.138 used numerical models to perform a similar 
study on the effect of MitraClip positioning. This 
study only considered the grasping of the septal and 
posterior leaflets with three grasping locations and 
the use of two clips. They concluded, similarly to 
Vismara et al.,137 that a single clip placement in the 
middle produced the best outcomes and that there 
was no further improvement by the second clip. 

HEMODYNAMIC STANDARDS FOR 

TESTING PROSTHETIC VALVES 

Regulatory approval of a new prosthetic valve 
requires demonstration of adequate hemodynamic 
performance. The current standards for TAVI de-
vices (International Organization for Standardiza-
tion [ISO] 5840-3) and surgical valves (ISO 5840-2) 
describe the experimental methods and minimum 
requirements for hemodynamic performance. For 
example, the effective orifice area of TAVI valves is 
required to be larger than that of comparable size 
SAVR valves. This requirement is a direct conse-
quence of the thinner stent relative to the surgical 
suture ring, which increases the opening area of 
TAVI. In addition to the ISO standard, there is a 
trend toward in vitro experiments with patient-
specific anatomies.20,139–148 This trend paves the way 
to more physiologic results, which until now could 
only be numerically simulated.16,144 Therefore, 
patient-specific experiments can also provide a bet-
ter platform for validation of numerical models. This 
is specifically important with the current advances 
in pre-procedural planning (see Patient-specific Pre-
procedural Planning Based on Numerical Models, 
above) and the increased demand by regulatory 
agencies to rely on computational modeling for de-
vice approval.149 The main reason for this require-
ment is that numerical models can still capture 
hemodynamic details that cannot be measured by 
any other means,150 such as the 3D velocity vector 
field or the spatial distribution of shear stress. In an 
attempt to standardize the numerical modeling 
methodologies and their credibility, the FDA became 
involved with the American Society of Mechanical 

Engineers (ASME) Committee for the new veri-
fication and validation standard for computational 
modeling of medical devices (ASME V&V 40).  

SUMMARY 

This paper reviewed state-of-the-art clinical and 
engineering advancement in heart valve treatments, 
with a focus on hemodynamics. Since the beginning 
of the twenty-first century, the field has been rapidly 
changing with the introduction of transcatheter 
heart valve implantation and repair. This review has 
looked at the treatment of heart valve disorders and 
several advancements currently under development 
or with limited use, which, in the near future, will 
potentially revolutionize their treatment. Examples 
of some of these devices include flexible polymeric 
valves, patient-specific pre-procedural planning 
based on numerical models, and the expansion of 
transcatheter valve implantation to the mitral, pul-
monary, and tricuspid valves. These advancements, 
and more gradual enhancements in procedural 
techniques and imaging modalities, could improve 
the quality of life of patients suffering from valvular 
disease who cannot, currently, be treated. 
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