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ABSTRACT 

Patients have an ongoing unmet need for effective therapies that reverse the cellular and functional damage 
associated with heart damage and disease. The discovery that ~1%–2% of adult cardiomyocytes turn over 
per year provided the impetus for treatments that stimulate endogenous repair mechanisms that augment 
this rate. Preclinical and clinical studies provide evidence that cell-based therapy meets these therapeutic 
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criteria. Recent and ongoing studies are focused on determining which cell type(s) works best for specific 
patient population(s) and the mechanism(s) by which these cells promote repair. Here we review clinical 
and preclinical stem cell studies and anticipate future directions of regenerative medicine for heart disease. 

KEY WORDS: Cell therapy, ischemic cardiomyopathy, non-ischemic cardiomyopathy, stem cells 

 

 

INTRODUCTION 

The leading cause of death by non-communicable 
disease in the world is cardiovascular disease (CVD), 
and the American Heart Association estimates that 
over half of all Americans above the age of 40 suffer 
from CVD, much of it hypertension-related.1 While 
the number of Americans dying from CVD was de-
creasing, that trend began reversing in ~2012.1 Cur-
rent treatments for CVD focus primarily on slowing 
disease progression or ameliorating pre-existing 
myocardial damage; however, the field lacks inter-
ventions that fundamentally reverse the progressive 
nature of CVD. Many patients with end-stage heart 
damage will require a heart transplant,1 yet there is 
a profound shortage of donors,2 illustrating the tre-
mendous need for alternative/novel therapies. 

One such approach is stem cell or cell-based 
therapy, a relatively new frontier in biomedical re-
search that has sparked much debate and controver-
sy in cardiovascular medicine.3,4 The heart was once 
thought to be incapable of regeneration, but the 
current consensus is that ~1%–2% of cardiomyo-
cytes turn over each year with a rate that decreases 
with age. Cardiac remodeling has been characterized 
by a persistent inflammatory reaction after acute 
stress and during chronic pathologies,5 increased 
oxidative stress,5 myocyte apoptosis,6 imbalanced 
oxygen consumption, energy metabolism and extra-
cellular matrix formation contributing to scar for-
mation,7 endothelial dysfunction,8 and decreased 
capillary density and neovascularization.9 Stem cells 
and other cell-based therapies hold promise to coun-
teract these effects and promote cardiac repair. Stem 
cells, strictly defined, possess the properties of both 
self-renewal and differentiation, whereas other cell-
based approaches act through the transmission of 
factors that stimulate endogenous regenerative path-
ways. Current data support the idea that both ap-
proaches improve cardiac structure and function, 
and this implication of cardiac repair has spurred 
much excitement in the field.10 A current great 
debate is whether engraftment and differentiation of 
exogenously administered pluripotent stem cells is a 

requirement for a therapeutic response, with some 
investigators arguing that it is an essential require-
ment for a therapeutic response.11,12 This contro-
versy is intensified by the observation that pluri-
potent stem cell therapies produce ventricular ar-
rhythmias in preclinical, large-animal models,11,13,14 
delaying clinical testing and the ability to compare 
these approaches with non-pluripotent cell-based 
therapies, which enjoy a substantial safety profile. 

Clinical trials have assessed the safety and feasi-
bility of cell-based therapy, largely testing culture-
expanded cells from bone marrow, adipose tissue, or 
the heart itself. While initial studies demonstrated 
positive results, some trials have produced little or 
no functional improvements in cardiac performance. 
A majority of studies have focused on surrogate pri-
mary end points, such as changes in left ventricular 
ejection fraction (LVEF) and cardiac volumes, but in 
some studies only small improvements (5% on aver-
age) were seen, which has dampened enthusiasm 
toward the field.15–17 However, substantial efforts 
continue toward improving cell-based approaches 
for cardiac repair. Here, we will review clinical trials 
of cell-based therapy for heart disease and speculate 
on potential future directions of regenerative cardio-
vascular medicine. 

MECHANISMS OF ACTION 

As mentioned above, a debate currently exists as to 
whether cell engraftment and differentiation is a 
requirement for a therapeutic response. Existing 
data suggest that functional and clinical responses 
can result from cell therapy using cell types that lack 
significant myocyte differentiation capacity.18–20 
However, there is little evidence that stem cells en-
graft into the target tissue in the long term, suggest-
ing a primarily paracrine mechanism of action.21,22 
Indeed, secretions of exosomes, growth factors, cy-
tokines, and metalloproteinases are mechanisms that 
contribute to the regenerative capacity of cells.21–23 
Stem cells also interact with host cells via hetero-
cellular coupling, wherein the cells communicate 
directly through gap junctions and tunneling nano-
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tubes to transfer small molecules and mitochondria, 
respectively.21,24 However, a lack of a complete un-
derstanding of the mechanisms involved should not 
preclude clinical studies for evaluating efficacy. 

Initial or first-generation stem cells were/are de-
rived from adult tissues, such as those isolated by 
bone marrow aspiration, and comprise either mix-
tures of different progenitor cell types, such as un-
fractionated bone marrow-derived mononuclear 
cells (BMMNCs), a heterogeneous population of stem 
cells, or more pure stem cell populations, many of 

which were isolated from BMMNCs (Figure 1). This 
latter group of cells includes hematopoietic stem cells 
(HSCs), mesenchymal stem cells (MSCs), endothe-
lial progenitor cells (EPCs), and others.26 Mesenchy-
mal stem cells, initially isolated from bone marrow, 
have been isolated from multiple tissues including 
adipose tissue, dental pulp, placenta, umbilical cord 
blood, and Wharton’s jelly.27,28 Mesenchymal stem 
cells exhibit properties important for a reparative 
cell, including immunomodulation29,30 and anti-
fibrotic,31 proangiogenic, and anti-oxidative effects, 
all of which provide support for their being ideal 

 

Figure 1. Advances in Cardio-regenerative Medicine. 

First-generation stem cell therapy utilized heterogeneous populations of cells, such as BMMNCs and more purified 

MSCs and EPCs isolated from either bone marrow or blood. Second-generation stem cells include purified cardiac 

cell populations such as c-kit+ CSCs and CDCs, ESC-derived cells, allogeneic cells, cardiopoietic cells, and 

combinations of stem cells. Proposed next-generation approaches will utilize placenta and umbilical cord 

(Wharton’s jelly) cells, iPSC-derived cells, stem cell-derived exosomes, and cell-containing patches. 

ADRC, adipose-derived regenerative cell; BMMNC, bone marrow mononuclear cell; CDC, cardiosphere-derived cell; 

CSC, cardiac stem cell; ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; MSC, mesenchymal stem cell. 

Adapted from Figure 3 of Banerjee et al.,25 used with permission. The Creative Commons license does not apply to 

this content. Use of the material in any format is prohibited without written permission from the publisher, Wolters 

Kluwer Health, Inc. Please contact permissions@lww.com for further information. 

mailto:permissions@lww.com
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candidates for treatment of cardiomyopathies. Fur-
thermore, the lack of MHC class antigens confers 
immunoprivileged characteristics that make MSCs 
suitable for allogeneic therapy.18 Endothelial pro-
genitor cells are primarily bone marrow-derived 
circulating progenitor cells characterized by the sur-
face markers CD34 and CD133.26 Endothelial pro-
genitor cell characteristics associated with their 
regenerative capacity include migration to injured 
areas to restore the endothelial niche, their pro-
angiogenic properties, and ability to improve endo-
thelial function.32 

Second-generation cell therapies include cardiac-
committed progenitor cells, that are lineage-directed 
by either genetic or secondary modifications to ac-
quire a specific phenotype, or pluripotent stem cells 
(PSCs). Cardiac-committed progenitor cells include 
c-kit+ cardiac stem cells (CSCs). These clonogenic 
and multipotent cells can differentiate under sec-
ondary injury, contributing to organ regeneration. 
In vitro, CSCs display strong paracrine signaling 
and multilineage transdifferentiation, making them 
suitable for cardiac regeneration.33 Cardiosphere-
derived cells (CDCs) are a heterogeneous population 
of cells isolated from myocardial tissue; they com-
prise CSCs and support cells and are capable of 
forming self-adherent clusters in vitro.34,35 These 
cells exhibit multilineage as well as clonogenic 
characteristics. Cardiopoietic cells are lineage-
directed MSCs treated with multiple growth factors 
to bolster their stemness potential and differentia-
tion.36 

The PSCs (embryonic stem cells [ESCs] and in-
duced pluripotent stem cells [iPSCs]) have the great-
est multilineage capabilities37–39; however, the risk 
of teratoma formation requires that these cells first 
undergo lineage-directed differentiation prior to 
transplantation.40,41 Additional post-transplantation 
concerns include the risk of arrhythmias11,13,14 and 
rejection by the recipient. In preclinical studies 
these cells have demonstrated variable effects on the 
restoration of cardiac function.11,13,14 

Third-generation therapy includes genetic repro-
gramming, exosomes, microRNA (miRNA), and the 
use of biomaterials to enhance the differentiation 
and regenerative capabilities of the cells.40 Exo-
somes are extracellular bilayer membrane vesicles 
that contain a diverse collection of proteins, lipids, 
and mRNAs/miRNAs and are secreted by a multi-
tude of cell types.42 The exosomes secreted by iPSCs, 
ESCs, MSCs, and CDCs have different profiles,43,44 

which ultimately physiologically manifest as in-
creased self-renewal or expansion. Moreover, there 
is a growing body of evidence that exosome secre-
tion is an important mode of cardiac cell com-
munication.21,22 

Route of Delivery 

Several factors contribute to the success of stem cell 
therapy. One of the most significant factors is the 
route of delivery45,46; yet there is no consensus on 
the best route. There are four primary methods of 
administration that are clinically practical, and each 
has its own advantages and disadvantages (Figure 2). 
For instance, although intracoronary delivery may 
cause poor cell retention in the heart, it carries the 
benefit of minimal inflammation.47 Transendo-
cardial stem cell injections (TESI) are a minimally 
invasive technique where stem cells are injected 
directly into the myocardium through the endocar-
dium. This procedure carries a small risk of per-
foration and arrhythmias; however, the retention of 
the cells is higher compared to other methods and in 

 

Figure 2. Various Approaches for Stem Cell Delivery to 

the Heart. 

A: Intravenous delivery (peripheral veins not shown). B: 

Transendocardial stem cell injection (TESI) via catheter. 

C: Epicardial injection. D: Intracoronary infusion via 

catheter. From Figure 10 of Golpanian et al.18 with 

permission of the American Physiological Society. 
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certain pathologies has shown greater effective-
ness.45 Intravenous delivery of stem cells is the least 
invasive route and takes advantage of physiological 
attraction signals which induce cellular homing to 
the site of injury.48 With intravenous administra-
tion, there are concerns of poor implantation and 
retention. Unfortunately, very few studies have di-
rectly compared the therapeutic difference between 
routes of delivery.49 A meta-analysis of preclinical 
studies in models of acute myocardial infarction 
(AMI) by Kanelidis et al.45 concluded that TESI was 
associated with improved efficacy over intracoro-
nary delivery. Additional preclinical and clinical 
studies are needed to establish an optimal route of 
delivery, and the most efficacious route may be cell-
type dependent. 

Acute Myocardial Infarction 

Bone-marrow derived mononuclear stem cells 
(BMMNCs) were some of the earliest cell types used 
in regenerative medicine to treat AMI.50,51 These 
cells are typically harvested from bone marrow and 
contain a heterogeneous group of cells including 
HSCs, MSCs, and EPCs.52 Because these cells can be 
obtained from bone marrow aspiration and do not 
require extensive expansion, BMMNCs are ideal for 
use in the setting of AMI and have been assessed in 
over 100 studies.53 Clinical trials involving BMMNCs 
were first conducted in the setting of AMI. 

One of the first clinical trials testing therapeutic 
efficacy of BMMNCs was TOPCARE-AMI (Tran-
splantation of Progenitor Cells and Regeneration 
Enhancement in Acute Myocardial Infarction).54 
This study evaluated BMMNCs delivered an average 
of 5 days after an AMI. The trial reported a signifi-
cantly increased LVEF and reduced scar size. Two 
years later, the BOOST (Bone Marrow Transfer to 
Enhance ST-Elevation Infarct Regeneration)55 trial 
showed similar promising results. It should be noted 
that the TOPCARE-AMI trial did not include a 
control group and the BOOST trial was open-label, 
since the control patients did not receive additional 
procedures, only standard care, compared to cell-
treated patients. Another trial, LEUVEN-AMI, also 
reported improved LVEF after BMMNC infusion 
therapy.56 The REPAIR-AMI (The Reinfusion of 
Enriched Progenitor Cells and Infarct Remodeling 
in Acute Myocardial Infarction)57 trial is the largest 
phase III, double-blinded, placebo-controlled clin-
ical trial to date and was conducted to assess the 
efficacy of BMMNCs. In this study, patients in the 
cell-treated arm had a significantly improved LVEF 

(5.5% in BMMNC group) compared to placebo 
(3.0%). After 1 year, death, myocardial infarction 
(MI), and the need for revascularization were lower 
in the BMMNC group. 

Although the initial studies were exciting, many 
subsequent studies demonstrated, at best, inconclu-
sive results. The ASTAMI (the Autologous Stem-Cell 
Transplantation in Acute Myocardial Infarction)58 
trial, undertaken in 2006, demonstrated that after a 
6-month follow-up, patients receiving cell treatment 
6 days post-AMI showed no significant difference in 
LVEF or scar size compared to patients adminis-
tered placebo. The multicenter, double-blinded, 
placebo-controlled TIME (Use of Adult Autologous 
Stem Cells in Treating People Who Have Had a 
Heart Attack)59 and LateTIME (Use of Adult Auto-
logous Stem Cells in Treating People 2 to 3 Weeks 
After Having a Heart Attack)60 trials found no im-
provements in LVEF, left ventricular volumes, or 
wall motion as measured by cardiac magnetic reso-
nance imaging between BMMNC and placebo groups. 
The SWISS AMI (Swiss Multicenter Intracoronary 
Stem Cells Study in Acute Myocardial Infarction)61 
trial was a multicentered, open-labeled clinical trial 
that treated patients with BMMNCs either 5–7 days 
or 3–4 weeks after AMI. Neither group improved 
left ventricular function or scar size at 12 months; 
however, there was a high drop-out rate in this 
study. Finally, the repeat BOOST-2 trial62 was un-
able to replicate the results of the original study. 

Preclinical data showed that a subpopulation of 
BMMNCs that were CD34+ could be a more suitable 
cell for AMI because of their angiogenic capacity.63 
As such, the PreSERVE-AMI (NBS10 Versus Placebo 
Post ST Segment Elevation Myocardial Infarction)64 
trial, the largest trial of stem cells for AMI in the 
United States, was conducted. This trial failed to 
show improvement in LVEF or resting myocardial 
perfusion; however, tertiary analyses demonstrated 
a significant association between change in LVEF and 
cell dose after adjusting for total ischemic time.64 

The growing evidence of MSCs playing a key role 

in cardiac repair encouraged researchers to investi-

gate their therapeutic efficacy in clinical trials.65 The 

effects of MSCs are the result of the secretion of 

cytokines, trophic factors, and matrix metallopro-

teinases which modulate the extracellular matrix 

and reduce infarct size and fibrosis.31 Compared to 

BMMNCs, human (h) MSCs are more efficacious in 

the setting of AMI. Hare et al.65 reported that pre-

cultured allogeneic hMSCs administered intrave-
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nously are safe, reduced episodes of ventricular 

tachycardia, and improved LVEF (6.7% greater than 

baseline). Another trial, WJ-MSC-AMI (Intracoro-

nary Human Wharton’s Jelly-derived Mesenchymal 

Stem Cells Transfer in Patients with Acute Myocar-

dial Infarction),66 demonstrated that MSCs derived 

from human umbilical cords increased LVEF (7.8%± 

0.9% versus 2.8%±1.2%) and decreased end systolic 

volume (ESV) and end diastolic volume (EDV). 

There is also an ongoing trial, AMICI (Safety Study 

of Allogeneic Mesenchymal Precursor Cell Infusion 

in Myocardial Infarction), which is a phase II trial 

examining intracoronary delivery of mesenchymal 

precursor cells (NCT01781390). 

Allogeneic CSCs have also been tested for thera-

peutic efficacy in the phase I/II, randomized, double-

blind, placebo-controlled CAREMI trial (Cardiac 

Stem Cells in Patients with Acute Myocardial Infarc-

tion).67 Cardiac stem cells did not significantly im-

prove scar size, left ventricular volumes, LVEF, or 

regional wall motion after 1 year of follow-up. 

CHRONIC ISCHEMIC CARDIOMYOPATHY 

Despite advances in interventional care for AMI, pa-
tients frequently go on to develop chronic ischemic 
cardiomyopathy (ICM). The growing evidence of 
efficacy of stem cell treatment in AMI inspired 
researchers to begin experiments and clinical trials 
investigating stem cell therapy in chronic ICM. A 
major paradigm of treatment for ICM is the attenua-
tion of left ventricular enlargement. Compared to 
mainstream treatment, regenerative medicine seeks 
to restore normal function, potentially being cura-
tive rather than palliative. As ICM is a chronic con-
dition, researchers can utilize and cultivate a variety 
of cell types in an effort to maximize therapeutic 
effects. 

There are significantly fewer studies carried out 

with BMMNCs in the setting of ICM. The first study 

exploring the effects of BMMNCs on patients with 

ICM was carried out by Perin et al.68 In this prospec-

tive, non-randomized, open-labeled study, BMMNCs 

were delivered via TESI. An evaluation performed 4 

months later concluded that LVEF significantly 

increased from a baseline of 20% to 29%, which was 

accompanied by a reduction in ESV in treated 

patients. The TOPCARE-CHD (Transplantation of 

Progenitor Cells and Regeneration Enhancement in 

Chronic Postinfarction Heart Failure)69 trial showed 

small but similarly significant increases in LVEF 

with BMMNC treatment that correlated with reduc-

tions in N-terminal pro-brain natriuretic peptide 

(NT-proBNP). However, cell treatment did not 

reduce scar size compared to placebo. Subsequent 

studies were not able to replicate the positive effects 

on LVEF. The FOCUS-CCTRN (First Mononuclear 

Cells Injected in the United States conducted by the 

Cardiovascular Cell Therapy Research Network)70 

trial, a phase II, randomized double-blind, placebo-

controlled study, showed no significant difference in 

LVEF or infarct size in patients treated with 

BMMNCs. 

The TAC-HFT (The Transendocardial Autolo-
gous Cells [hMSC or hBMC] in Ischemic Heart Fail-
ure Trial)71 was one of the earliest trials examining 
MSCs as a treatment for ICM. Importantly, it was 
the first trial to compare BMMNCs to MSCs head-to-
head. This phase II randomized, placebo-controlled 
study failed to demonstrate improvements in LVEF 
or left ventricular volumes; however, both groups 
showed improvement in quality of life (QoL) as 
measured by the Minnesota Living with Heart 
Failure Questionnaire (MLHFQ) score. Additionally, 
the 6-minute walk distance (6MWD) improved only 
in the MSC group. Infarct size was reduced by 19% 
in the MSC group, whereas in the BMMNC and pla-
cebo groups it remained unchanged. The POSEIDON 
trial (Percutaneous Stem Cell Injection Delivery 
Effects on Neomyogenesis)72 study compared alloge-
neic to autologous MSCs and demonstrated that 
both MSC groups reduced scar size by ~33%, con-
sistent with the TAC-HF trial. Of note, both the 
POSEIDON and TAC-HFT studies showed that QoL 
can be improved without concomitant improve-
ments in LVEF. The MSC-HF trial73 assessed TESI 
of autologous MSCs and showed increased LVEF of 
6.2% compared with placebo, as well as reduced left 
ventricular ESV. These increases were maintained at 
the 1-year follow-up while myocardial mass was 
greater than at 6 months.74 There was a correlation 
between cell dose and improvements.74 The ran-
domized, double-blinded TRIDENT trial75 examined 
dose-dependence of allogeneic MSCs. In this study, 
the 100 million cell dose improved absolute LVEF 
by 3.6% compared to no change in the 20 million 
cell dose group after 12 months. Additional, larger 
clinical trials are needed. 

A more recent approach is treatment using com-
binations of stem cells, which may provide greater 
therapeutic efficacy than a single cells type, as was 
observed with MSCs+CSCs in preclinical studies in 
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porcine models of ICM.76–78 These porcine studies 
formed the basis of the ongoing phase II CONCERT-
HF trial (Combination of Mesenchymal and C-kit+ 
Cardiac Stem Cells as Regenerative Therapy for Heart 
Failure),79 which is assessing if the combination of 
MSCs plus CSCs provides greater cardiac repair in 
humans than either cell type alone. Other clinical80 
and preclinical77,81 studies have also demonstrated a 
positive effect of combination stem cell therapy. 

Cardiospheres were first described after a popu-
lation of cells isolated from subcultures of atrial or 
ventricular biopsy specimens were shown to be able 
to differentiate into cardiomyocytes, endothelial 
cells, and smooth muscle cells.34 Cardiospheres con-
tain a heterogeneous mixture of cell types including 
cells that express endothelial (KDR [human]/flk-1 
[mouse], CD31), stem cell (CD34, c-kit, Sca-1), and 
mesenchymal (CD105, CD90) cell surface markers.34 
However, the specific cell type contributing to cardi-
ac functioning and remodeling is unknown.82 Prom-
ising preclinical work provided the basis for a phase 
I, randomized trial, CADUCEUS (Cardiosphere-
Derived Autologous Stem Cells to Reverse Ventricu-
lar Dysfunction),83 in patients with ICM. At 1.5–3 
months after MI, 17 patients were administered 
intracoronary injections of autologous CDCs (98% of 
cells given were CD105-positive). Although scar size 
was reduced by 42% in the treatment arm, CDC 
therapy failed to increase LVEF, reduce left ven-
tricular volumes, or improve QoL as measured by 
MLHFQ. The ALLSTAR (Allogeneic Heart Stem 
Cells to Achieve Myocardial Regeneration)84 trial 
using CDCs had to be suspended by the Data Safety 
Monitoring Board because the study failed to meet 
the primary end point. Given the heterogeneous 
nature of this cell preparation, it may be difficult to 
identify which cell type(s) truly contributes to any 
beneficial effects. 

Cardiopoietic stem cells (CPSCs) are MSCs that 
are manipulated ex vivo to undergo cardiopoiesis in 
order to enhance their cardio-reparative function-
ality.85,86 The randomized, double-blinded, placebo-
controlled CHART-1 (Congestive Heart Failure Car-
diopoietic Regenerative Therapy)87 trial was con-
ducted to ascertain the safety and therapeutic value 
of CPSCs in patients with ICM. The primary efficacy 
end point of a Finkelstein–Schoenfeld hierarchical 
composite (mortality, worsening heart failure, 
MLHFQ, 6MWD, LVEF, ESV) at 39 weeks was not 
achieved. 

NON-ISCHEMIC DILATED 

CARDIOMYOPATHY 

Non-ischemic dilated cardiomyopathy (NIDCM) is 
the leading cause of death among heart transplant 
recipients.88 As with ICM, BMMNCs were the first 
cell type to be tested in the setting of NIDCM. In the 
TOPCARE-DCM (Transplantation of Progenitor 
Cells and Recovery of Left Ventricular Function in 
Patients with Non-Ischemic Dilatative Cardiomy-
opathy)89 trial, patients showed improvements in 
LVEF, regional wall motion at 3 months after treat-
ment, and decreased NT-proBNP levels at 1-year 
follow-up. Similarly, the ABCD (Autologous Bone 
Marrow Cells in Dilated Cardiomyopathy)90 trial 
found positive results, including QoL parameters, 
which conflicted with the MiHeart,91 a multicenter, 
randomized, double-blind clinical trial that evalu-
ated intracoronary delivery of BMMNCs and showed 
no significant changes in LVEF and left ventricular 
volumes. 

Compared to ICM, NIDCM has a more signifi-
cant immunologic component.92 As such, MSC ther-
apy could prove beneficial due to its immunomod-
ulatory, reverse remodeling, and regenerative 
properties.93,94 The POSEIDON-DCM trial (Percu-
taneous Stem Cells Injection Delivery Effects on 
Neomyogenesis in Dilated Cardiomyopathy)25 ran-
domly allocated 37 patients with idiopathic NIDCM 
to receive TESI of allogeneic or autologous MSCs. 
Functional parameters and LVEF increased signifi-
cantly only in the allogeneic group (Figure 3). Of 
note, LVEF increases were not accompanied by 
reductions in left ventricular volumes, suggesting 
that reverse remodeling is not the primary means by 
which cardiac function is improved. Incidence of 
major adverse cardiac events and hospitalization 
rate was also significantly lower in the allogeneic 
group.25 Moreover, treatment with allogenic MSCs 
significantly increased QoL and functional capacity. 
Both treatment arms noted significantly decreased 
systemic tumor necrosis factor (TNF)-α levels. The 
POSEIDON-DCM trial also demonstrated that pa-
tients lacking a pathologic genetic variant responded 
better to cell therapy (Figure 4).96 However, this 
study lacked a control group, and this approach 
should be further investigated in a larger study. A 
study by Vertelov et al. observed that ischemia-
tolerant MSCs, i.e. hMSCs cultured under hypoxic 
conditions, are more therapeutically efficacious than 
hMSCs grown in normoxia.97 To ascertain this effect 
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in vivo, Butler et al.98 conducted a pilot study in 
which bone marrow-derived MSCs isolated from 
healthy donors were grown under hypoxic condi-
tions and subsequently administered to 22 patients. 
Although no improvements in left ventricle anatomy 
or function were noted, QoL and 6MWD scores 
improved significantly in the treatment arm. 

Interestingly, the administration of CD34+ cells 
demonstrated consistent improvements in LVEF,99 
6MWD, brain natriuretic peptide (BNP) levels, as 
well  as  survival  at 1 and 5 years  post-treatment.99  

The comparison between intra-coronary and TESI 

delivery demonstrated that TESI produced higher 

engraftment and therapeutic efficacy.49 Importantly, 

a subset of patients with NIDCM and diabetes mel-

litus did not respond similarly to the non-diabetic 

population, which had an improvement in LVEF.100 

These studies demonstrate that specific subpopula-

tions of patients respond to a greater or lesser extent 

to the same therapy, illustrating the importance of 

adequately assessing the profile of patients, the 

cell(s) to be delivered, and the route of delivery. 

 

Figure 3. Differences in the Therapeutic Efficacy of Allogeneic hMSC and Autologous hMSC. 

The POSEIDON-DCM95 study demonstrated differences in the therapeutic efficacy of allogeneic (Allo, blue) hMSC, 

and autologous (Auto, red) hMSC. A: Change from baseline in the 6-minute walk distance (6MWD). B: Change from 

baseline in forced expiratory volume in 1 second. C: Individual patient response in ejection fraction; shaded areas 

are 95% CI. From Hare et al.95 [CC BY-NC-ND 4.0]. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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OTHER POTENTIAL SOURCES OF CELLS 

FOR CARDIAC REPAIR 

Pluripotent Stem Cells 

While many stem cells have been tested for their 
cardio-reparative capacity, ESCs and iPSCs have yet 
to be thoroughly assessed in clinical trials. As men-
tioned above, these cells have the greatest multi-

lineage capability, but also some of the highest 
potential risks.37–39,101 

Embryonic Stem Cells 

Embryonic stem cells are immortal, pluripotent cells 

derived from the inner cell mass of the pre-

implantation embryo, that are propagated ex 

 

Figure 4. Genetic Variation Affects Major Adverse Clinical Events (MACE) and Survival in Response to Delivery of 

MSCs. 

POSEIDON-DCM patients negative for pathologic genetic variants (V-, green) had fewer MACE (A) and greater survival 

(B) than patients with variants of uncertain significance (VUS, orange) or pathologic/likely pathologic variants (PV+, 

red). Overall, PV+ patients had a substantial increase in death, transplant, or left ventricular assist device (LVAD) 

risk by 1-year follow-up. From Figure 3, Rieger et al.96 [CC BY-NC-ND 4.0]. 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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vivo.102,103 However, the risk of teratoma formation 

requires that these cells first undergo lineage-

directed differentiation prior to transplantation.40,41 

Additional concerns after transplantation are the 

risk of arrhythmias and rejection by the recipient. 

Two preclinical studies involved the intramyo-
cardial administration of human ESC-derived car-
diomyocytes (hESC-CMs) into non-human primates 
following ischemia/reperfusion injury.11,13 Pigtail 
macaques were kept immunosuppressed and ad-
ministered 1×109 hESC-CMs 2 weeks post-MI11 or 
750×108 hESC-CMs 4 weeks post-MI.13 The hearts 
exhibited islands of engrafted hESC-CMs, but there 
was no reduction of infarct size, and non-lethal ven-
tricular arrhythmias were seen in all animals.11,13 A 
similar study was conducted using 1×109 hESC-CMs 
in a porcine model of MI. Similar to the macaque 
studies, the immunosuppressed pigs had islands of 
engrafted hESC-CMs but no cardiac functional or 
structural improvements (Figure 5).14 These results 
suggest that further preclinical studies are needed to 
optimize the therapeutic effects of hESC-CMs. How-
ever, Menasche et al. demonstrated that hESC-
derived cardiac progenitor cells embedded into a 
fibrin scaffold are safe in a patient with severe heart 
failure.41 Cell therapy did not cause complications, 

and after 3 months the patient showed improve-
ments in cardiac function. Importantly, the Euro-
pean clinical study, ESCORT, in which hESC-
derived cardiac progenitors were transplanted with-
in a fibrin patch into heart failure patients (n=6), 
showed safety and efficacy.41 One patient died early 
post-operation from treatment-unrelated comor-
bidities. The other 5 patients showed no evidence of 
significant adverse effects (SAEs), and they improved 
symptomatically with an improved wall motion of 
the cell-treated segments. 

Induced Pluripotent Stem Cells 

Due to the ethical concerns of harvesting ESCs, 

scientists have sought alternative methods to isolate 

multipotent stem cells. Takahashi and Yamanaka 

developed a novel protocol to generate pluripotency 

from murine somatic cell by integrating a variety of 

transcription factors into the cell’s genome via retro-

viral transduction.104 This technique was then ap-

plied to human somatic cells.105 Subsequent studies 

have demonstrated that these iPSCs have the capaci-

ty to differentiate into all three germ layers in addi-

tion to somatic cells, including cardiomyocytes and 

other cardiovascular cells.106,107 Furthermore, these 

cells could also aid in repair of heart valves and 

 

Figure 5. In a Porcine Model of MI, hESC-CMs Demonstrated Engraftment but no Functional or Structural 

Improvements. 

Islands of engrafted cells were seen in immunosuppressed pigs receiving hESC-CMs by magnetic resonance imaging 

(A) and immunostaining (B). The hESC-CM-injected pigs demonstrate no reduction in scar size (C) or improvement in 

LVEF (D). Adapted from Romagnuolo et al.14 [CC BY 4.0]. 

https://creativecommons.org/licenses/by/4.0/
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vessels.108 A major concern when using these pluri-

potent cells, as with ESCs, is tumorigenesis. How-

ever, this risk can be mitigated by isolating cells or 

cell lines that have undergone at least some differ-

entiation.109 An initial clinical trial to evaluate safety 

and efficacy of a patch with 100 million repro-

grammed iPSC cardiomyocytes was approved in 

Japan. Three patients with ICM were treated initial-

ly; a further 7–10 patients will be recruited and fol-

lowed up over the period of 1 year.110 The Treating 

Heart Failure With hPSC-CMs (HEAL-CHF) Trial 

(NCT03763136) is an open-label study recruiting 5 

patients to receive epicardial injection of allogeneic 

PSC-CMs. There are as yet no reports from either of 

these two studies. Continuing studies will have to 

investigate methods to maintain stable cell lines as 

well as address scalability for clinical grade produc-

tion.111 Table 1 compares the efficacy of different cell 

types for increasing LVEF, and reducing EDV and 

scar size in clinical trials to date. 

Placental Stem Cells 

The placenta is a novel source of potentially cardio-
regenerative cells. Perinatal tissue is a rich source of 
a variety of stem cells that can be isolated from the 

amnion, chorion, umbilical cord (e.g. Wharton’s 
jelly) and the placental cotyledons from the fetal 
side and the decidua from the maternal side. Many 
of these cells display MSC-like characteristics, such 
as adherence to plastic and immunomodulation. 
Furthermore, in vitro, they inhibit cardiomyocyte 
apoptosis and are pro-angiogenic (reviewed by 
Bollini et al.117). 

Cells isolated from the murine near-term pla-
centa and expressing the Caudal-type homeobox-2 
(Cdx2) were recently reported to form beating car-
diomyocytes and vascular lineages ex vivo. Further-
more, these Cdx2+ cells homed to the injured heart 
and promoted cardiac repair when injected intrave-
nously (1×106 cells) post-MI in a mouse model. 
Three months post-injection, the cells were found 
integrated within the myocardium, primarily in the 
border zone, where they exhibited a cardiomyocyte 
morphology. Cell-treated hearts exhibited improved 
LVEF and stroke volume and reduced adverse 
remodeling compared to placebo-injected mice.118 

Tissue-specific MSCs 

Most studies have assessed the therapeutic effects of 
bone marrow- and adipose tissue-derived MSCs. 
These cells can be isolated and expanded in large 

Table 1. Comparison of Cell Types. 

Cell 
Type 

Preclinical 
Animal 

Studies (n) 

Completed Clinical 
Studies at 

ClinicalTrials.gov (n) 

Change in Clinical Data  

LVEF (%) EDV (mL) Change in Scar 
Size (%) 

AMI ICM AMI ICM NIDCM AMI ICM NIDCM AMI ICM NIDCM AMI ICM 

MSCs 335 133 4 * 6 † 2 ‡ 6.0 5.7 8.0 N/A -9.3 N/A –6.2 –25.9 

CPCs 182 87 0 1 § 0 N/A 5.4 N/A N/A -12 N/A N/A –12 

ESCs 3 0 0 1 ** 0 N/A 12.5 N/A N/A -14.5 N/A N/A N/A 

iPSCs 3 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A 

* References 65, 66, 112, and 113. 

† References 71–74, 75, 114, and 115. 

‡ References 25 and 98 

§ Reference 116. 

** Reference 41. Cells delivered via patch not intramyocardial. 

Initial search criteria: Heart or cardiac, cells, completed studies, with results (=148 results on 

clinicaltrials.gov). An advanced search of these results was performed for “acute myocardial infarction,” 

“ischemic cardiomyopathy,” or “non-ischemic dilated cardiomyopathy,” each with the intervention of: 

“mesenchymal stem cells” for MSCs; “cardiosphere-derived stem cells” and “cardiopoietic stem cells” for CPCs; 

“embryonic stem cells” for ESCs; or “induced pluripotent stem cells” for iPSCs. 

N/A, data not available. 
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quantities while retaining their immunomodulatory 
characteristics,119 but the properties of these MSCs 
are influenced by their tissue of origin. For example, 
bone marrow-derived MSCs are highly proangio-
genic120 and may be more immunosuppressive than 
adipose-derived MSCs.121,122 Mesenchymal stem cells 
have also been isolated from other tissues, including 
umbilical cord (Wharton’s jelly), amniotic fluid, 
peripheral blood, and the heart. Again, the tissue of 
origin appears to provide MSCs with characteristic 
properties122–126 and secretomes,127 and for thera-
peutic use it may be important to determine which 
MSC source is best for a specific patient. 

EXOSOMES/MICROVESICLES 

Some studies suggest that exosomes have an 
(almost) equivalent therapeutic efficacy as intact 
cells.128–130 Other data also demonstrate that the 
therapeutic effect of cell therapy may not correlate 
with engraftment,131 supporting a paracrine mechan-
ism. The discovery of these paracrine mechanisms of 
repair not only significantly challenges the notion of 
engraftment-dependent healing, but also opens an-
other avenue of therapy delivery.42,132 Engineered 
exosomes with an ischemic myocardium-targeting 
peptide can enhance myocardial viability and reduce 
infarct size after MI in mouse models.43,133–135 Cell-
free suspensions containing important reparative 
exosomes could be used instead of intact cells, 
avoiding some of the inherent issues associated with 
cells, such as ex vivo expansion, tumor formation, 
and immune rejection. Studies directly comparing 
the different approaches will provide guidance 
toward the most therapeutic approach. 

PATCHES/BIOMATERIALS: BIO-

ENGINEERING IN STEM CELL THERAPY 

Transplantation of viable cells into the harsh envi-
ronment of necrotic myocardium remains a signifi-
cant therapeutic challenge resulting in very poor cell 
retention.136,137 To combat this problem, tissue engi-
neering approaches have designed biomaterials as 
cell retention mediums. These injectable biomateri-
als must perform many (often contradictory) func-
tions. They must be biodegradable, biocompatible, 
provide mechanical support, be of appropriate 
dimension, allow for precise placement,138 improve 
cell survival, and promote tissue regeneration.139,140 
These polymers can either be synthetic or naturally 
derived, each having their own advantages and 
disadvantages. Some polymers can even be specifi-

cally tailored to optimize cardiac repair,141 and 3D-
printing has increased the available types of bioma-
terials, improving cell integration and vasculariza-
tion.142 Preclinical studies have demonstrated im-
proved cell viability and cardiac repair when used 
with human pluripotent stem cells and MSCs.141,143,144 
While significant progress has been made, improv-
ing polymer compatibility and mechanical proper-
ties must occur before clinical studies can begin. 

FUTURE DIRECTIONS 

Stem cell and cell-based therapy is still relatively 
new, and studies need to define the cell type/cell 
product, the frequency and route of stem cell injec-
tion, and the patient population most likely to re-
spond. Recent preclinical studies show that the 
administration of a large number of exosomes often 
produces similar cardiac repair as cell injection,145,146 
prompting the view that the cells are not needed. 
However, this equivalency is often dependent on the 
route of exosome administration and has only been 
demonstrated in the short term, while stem cell ther-
apy has demonstrated long-term effects, despite poor 
stem cell retention and survival. Studies comparing 
the long-term effects of cells versus exosomes (or 
combination of the two) still need to be performed. 

Other approaches toward optimizing stem cell 
therapy include assessing the effects of multiple 
rounds of injections. Tokita et al. demonstrated that 
three rounds of cardiac progenitor cell injections 
provided greater cardiac repair than a single injec-
tion of 3-fold more cells in a mouse model of ische-
mia.147 As mentioned above, the administration of a 
combination of stem cells is therapeutically syner-
gistic, providing greater benefits than the individual 
cells in swine models of ICM,74–76 and this approach 
forms the basis of the CONCERT-HF clinical trial.77 

Additionally, the choice of patient is important. 
While the CHART-1 study did not meet its primary 
end point, a subpopulation of patients responded 
well.36,85 Precision medicine approaches may also 
influence a patient’s responsiveness to stem cell 
therapy. As mentioned above, Rieger et al. recently 
showed that, in the POSEIDON-DCM trial, patients 
who did not have a specific genetic variant respond-
ed better to treatment.96 Furthermore, sex,148 age,149 
and serum concentration of a variety of factors150 
may play significant roles in a patient’s response and 
need to be taken into account when designing clini-
cal trials (Figure 6). 
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Clinical trials will also need to be nimble and 
develop better ways to assess efficacy and increase 
study power by incorporating ongoing results as well 
as new information that becomes available after the 
trial commences. The DREAM-HF (Double-Blind 
Randomized Assessment of Clinical Events With Al-
logeneic Mesenchymal Precursor Cells in Advanced 
Heart Failure; NCT02032004) is such a trial. It is a 
phase III, randomized, placebo-controlled study 
assessing the safety and efficacy of mesenchymal 
precursor cells (MPCs) as immunotherapy in 
patients with advanced, chronic heart failure with 
reduced ejection fraction.  The DREAM-HF trial 
uses patient enrichment strategies to establish a 
patient population with reduced heterogeneity 
(baseline disease enrichment), high targeted out-
come event rate (prognostic enrichment) and higher 
likelihood to respond (predictive enrichment). 
Adaptive statistical models are also needed. The 
DREAM-HF trial uses a joint frailty model, which 
treats terminal and recurrent heart failure events 
differently and models correlations between recur-

rent and terminal events, which takes into account 
random, between-patient differences. Such innova-
tive approaches will allow for  smaller, yet more 
definitive trial designs.151 Along with CONCERT-HF, 
DREAM-HF is likely to report results in 2020, and 
together these trials will add substantially to the 
clinical and mechanistic data base of the potential of 
cell-based therapy for chronic heart failure. 

CONCLUSION 

The past two decades have witnessed substantial 
translational efforts to develop cell-based therapies 
for heart disease.  While many clinical trials have 
been conducted, testing several strategies, the field 
has yet to yield a clear understanding of the clinical 
application in this important area.  Nonetheless, the 
studies conducted to date have laid a robust ground-
work for ongoing new efforts—including phase III 
and larger-powered phase II studies, as well as 
major progress at the bench and in preclinical 
models in the application of pluripotent stem cells.  
With these ongoing avenues of research, the field is 

 

Figure 6. Effectiveness of MSCs Is Independent of Sex of the Patient. 

Cell therapy improves cardiac function, functional parameters, endothelial function, and inflammatory response 

independently of the sex of the patient.  

LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living with Heart Failure Questionnaire; NYHA Class, New 

York Heart Association Functional Classification. 

Adapted from the graphical abstract in Florea et al.148; by permission of Oxford University Press. 
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moving closer to yielding a successful strategy for 
addressing one of the largest unmet needs in 
modern medicine, that of chronic heart disease. 
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