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ABSTRACT 

At the time of writing, in July 2020, the COVID-19 pandemic has already inflicted dramatic international 
restrictions, including airports closing and limiting international travel. It has been suggested that re-
opening of airports should involve and even rely on testing travelers for COVID-19. This paper discusses 
the methodology of estimating the detection and diagnostic accuracy of COVID-19 tests. It explains the 
clear distinction between the technical characteristics of the tests, the detection measures, and the 
diagnostic measures that have clinical and public health implications. It demonstrates the importance of 
the prevalence of COVID-19 in terms of determining the ability of a test to yield a diagnosis. We explain 
the methodology of evaluating diagnostic tests, using the predictive summary index (PSI), and the 
minimum number of tests that need to be performed in order to correctly diagnose one person, which is 
estimated by 1/PSI. In a population with low prevalence, even a high-sensitivity test may lead to a high 
percentage of false positive diagnoses, resulting in the need for multiple high-cost tests to achieve a 
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correct diagnosis. Thus, basing a policy for opening airports on diagnostic testing, even with the best test 
for COVID-19, has some limits. 

KEY WORDS: Bayes’ theorem, COVID-19, diagnostic tests, epidemiology, flights, methods, screening 

 

 

INTRODUCTON: WHY DO WE NEED TO 
STUDY TEST ACCURACY? 

At the time of writing, in July 2020, more than 13 
million persons worldwide have been infected by 
the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), leading to a pandemic of corona-
virus disease 2019 (COVID-19). More than half a 
million persons have died of the disease.1 The 
accurate detection of the viral infection by medical 
and laboratory tests is critical for finding a cure and 
for planning public response measures. However, 
the results that the tests provide depend on the 
prevalence of the disease, as is explained below. 

All medical tests are inaccurate, i.e. they may 
yield both false positive and false negative results. 
Some of these errors may have grave consequences 
for individuals and society. A false negative diag-
nosis may lead a person to be falsely assured and 
therefore avoid necessary quarantine. On the other 
hand, a false positive diagnosis may lead to un-
necessary quarantine or unnecessary treatment. 

We discuss the properties of the associated 
calculations, the accuracy measures of medical 
tests, and the estimate of the minimum number of 
tests that need to be performed in order to correctly 
diagnose one patient. 

TWO TYPES OF TESTS FOR COVID-19 

There are two main types of tests used for detecting 
and diagnosing COVID-19 infection for clinical or 
surveillance purposes: molecular and serological.2–4  

Molecular tests detect the pathogen of acute dis-
ease. These tests may also detect fragments of the 
pathogen before it is fully cleared from the body, 
even if the pathogen is no longer able to replicate or 
cause disease. Currently, such tests rely on a tech-
nique called reverse transcriptase–polymerase 
chain reaction (RT-PCR) to detect the presence of 
the virus. These tests can provide data on the inci-
dence of the disease, i.e. the fraction of a population 
that is newly infected. This paper is focused on the 
evaluation of these tests. 

Serological tests—sometimes referred to as 
“antibody tests”—can provide information about the 
prior infection of an individual, indicating the 
body’s immune response to the virus, and can de-
tect the infection after convalescence. These tests 
can provide data on the prevalence of the disease, 
i.e. the fraction of the population that has been 
infected by the disease in the past. The body makes 
IgM and then IgG antibodies within about 10 days; 
IgM indicates a very recent infection, and IgG indi-
cates infection at any time in the past. Serological 
tests can help public health officials determine the 
prevalence of previous infection, including among 
asymptomatic individuals, and among those with 
mild symptoms who did not seek medical care. 
Prevalence determination may help in deciding to 
relax social distancing and quarantine measures. 
Further, the serological test may be used to explore 
an individual’s previous infection by the virus. This 
paper explains the importance of utilizing the 
information from serological tests, i.e. for deter-
mining the prevalence of the disease. 

TWO TYPES OF TEST ACCURACY 
MEASURES 

Each of the above tests may be used for two differ-
ent goals: detection (Table 1) or diagnosis (Table 2) 
of the disease.5–21 

Detectability Measures: Technical 
Characteristics of No Clinical Importance 
We use italic lower-case letters in the description of 
screening in the general population in a 2×2 table, 
Table 1. The sensitivity and specificity are calcu-
lated in samples of persons with (a+c) and without 
(b+d) the disease in a selected population. In this 
table, it is not appropriate to include the totals of 
the “horizontal” axis of test (T) results. 

A researcher could determine the detectability 
of COVID-19 in a study where the prevalence of the 
disease is artificial. For example, a study may cal-
culate the sensitivity and specificity of a test in 100 
persons with a disease (e.g. clinical COVID-19), and 
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100 persons without the disease. We set the preva-
lence of COVID-19 in this particular study, arti-
ficially, to be 50%. 

The sensitivity and specificity are used to de-
scribe the technical characteristics of a test. These 
measures are not useful in the clinical setting, be-
cause the prevalence of the disease is different in a 
true patient population. The sensitivity or specific-
ity could tell us the percentage of the persons with 
(or without) the disease that would be detected, but 
we will not know how many patients with COVID-
19 (or without it) will be diagnosed correctly. For 
example, we could know the percentage of persons 
with the disease that would be quarantined  based  
on  detection  by a test,  but we could not know how 

many persons would be quarantined. The informa-
tion on the percentage of detected persons would 
be meaningful only if we know the prevalence of the 
disease. 

The fraction (percent) of persons with the dis-
ease who would not be identified (i.e. the false 
negative fraction) is 1fnf sensitivity= − . The 
fraction (percent) of persons without the disease 
who would not be identified (i.e. the false positive 
fraction) is 1fpf specificity= − .  

The Youden index (J) is a summary measure of 
the goodness of a test. It describes the percent of 
correct detection (without false negative nor false 
positive detection). This index is defined as: 

Table 1. Data Presentation in a Selected Population, Assessing the Detection Capability of a Test. 

  COVID-19 
  S+  

Sick 
S-  

Not Sick 

Test Results 

T+ 
Positive Test 

a b 

T- 
Negative Test 

c d 

  a+c b+d 
 

( | ) asensitivity P T S
a c

= + + =
+

, ( | ) dspecificity P T S
b d

= − − =
+

 

Error terms for the study population: 

  

  

bfalse positive fraction fpf
b d

cfalse negative fraction fnf
a c

= =
+

= =
+

 

 1Youden Index J sensitivity specificity= = + −  

            1= =nns minimal number of people needed to be screened to detect correctly one person J  
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( )
( ) ( )

 1

1 1 1

1

J fpf fnf

sensitivity specificity

sensitivity specificity

= − +

= − − + −  
= + −  

When J=1, the test is always correct: there are 
no errors, so 0fpf fnf+ = , and the test detects 
correctly the sickness status. 

When J=0, assuming that sensitivity and 
specificity are of equal importance in determining 
the expected gain, the test provides no information. 
In other words, the test is useless if the proportion 
of errors equals 100%, and 1fpf fnf+ = , leading 
to J=0. 

When 1 0J− < < , the test is misleading: its re-
sults are negatively associated with a true diag-
nosis. When 1J = − , the test is always misleading.  

J can also be interpreted as the difference be-
tween the true and false positive fractions.  

Since J sensitivity fpf= − , J reflects the excess 
of the proportion of a positive result among patients 
with the disease versus patients without the dis-
ease. Similarly, J also reflects the excess in the pro-
portion of a negative result among patients without 
the disease versus patients with the disease. This 
can also be written as J specificity fnf= − . 

Table 2. Data Presentation in a Clinical Study Setting in a Target Patient Population Assessing the Diagnostic 
Capability of a Test.  

  COVID-19  
  S+  

Sick 
S-  

Not Sick 
 

Test Results 

T+ 
Positive Test 

A B A+B 

T- 
Negative Test 

C D C+D 

     
 

( | ) APPV P S T
A B

= + + =
+ , 

( | ) DNPV P S T
C D

= − − =
+  

Error terms for the study population: 

  1

  1

= = = −
+

= = = −
+

BFalse Positive Fraction FPF PPV
A B

CFalse Negative Fraction FNF NPV
C D

 

1PSI PPV NPV= Ψ = + −  

          1= =NND Minimal Number Needed to be tested to diagnose correctly one person PSI  
 

 

(Eq. 1) 
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J as a difference measure of detectability 
analogies to a cohort study 

Table 1 is analogous to a clinical trial or a cohort 
study that compares the risk of a disease among 
those exposed to a risk factor, Rexposed, and the risk 
among those who are not exposed, Rnon-exposed. The 
“causative” variable (i.e. the “exposure”) is the fact 
that a person does or does not have the disease, and 
the diagnostic test results (positive or negative) are 
the “outcome” of the disease. The difference in risk 
between the exposed and non-exposed persons is 
measured by the risk difference (RD): 

 

-

=
= −
RD Risk difference

R Rexposed non exposed
 

J is analogous to RD. 

= −J sensitivity fpf  

Therefore, a derived analogy of the well-known 
measure of the “number needed to treat”, 
( ) 1NNT RD= , is 1 J . The value 1 J  may be in-
terpreted as the number of persons that need to be 
examined in order to correctly detect by screening 
(nns) one person with the disease (Table 1) of 
persons with and without the known disease. The 
nns could help in estimating the minimum number 
of tests that has to be applied to persons with 
known diagnosis of COVID-19 (with or without the 
disease) in order to detect one person correctly 
(positive or negative, respectively). It can be useful 
in assessing a percent of a successful monitoring 
program (how many of the persons with, or with-
out, the disease will be detected). However, it can-
not assess how many persons with or without the 
disease will be detected, and thus it has no clinical 
or public health importance, because it cannot be 
applied to a real population in which we do not 
know the COVID-19 diagnoses.  

Currently, PCR tests have a sensitivity or speci-
ficity of approximately 70%–95%, depending on 
the conditions of the tests.5 For example, the sensi-
tivity of the PCR test using a nasopharyngeal swab 
is higher than that using a nasal swab, while the 
specificity of the test is lower using a nasopharyn-
geal swab. For simplicity, we assume here a 90% 
sensitivity and 90% specificity for both PCR and 
serological tests. 

Example 
Suppose that a population of 1000 travelers is 
screened for COVID-19, using the PCR test. The 
test will detect 90% of the persons with COVID-19. 
These persons will be treated or quarantined. How-
ever, the test will not detect 10% of the persons with 
the disease, i.e. the test will have an fnf of 10%. This 
would allow 10% of the persons with COVID-19 to 
continue interacting with their family and the com-
munity, with the implied risk of transmitting the 
disease. Similarly, the test would correctly detect 
90% of the persons without COVID-19. These per-
sons would not be quarantined. However the test 
would incorrectly detect infection in 10% of the 
uninfected persons, i.e. the test will have an fpf of 
10%. This would allow 10% of the persons without 
COVID-19 to be unjustifiably quarantined. For 
these data, J would be 0.80. This indicates 80% 
better information compared to the case where no 
test is used, or if a useless test with J=0 is used. 
Note that we know only the test’s ability to detect 
the percentage, and not the number of persons that 
would be diagnosed with or without the disease. We 
know that the test will detect 90% of the persons 
with (or without) the disease. However, since the 
prevalence of the disease in the traveler population 
is not known, we will not know the number of per-
sons with the disease (or without the disease, 
respectively). The test would not show how many 
travelers would need to be quarantined, nor how 
many travelers would not be quarantined because 
of false negative test results. Based solely on detec-
tion measures, it is not possible to plan quarantine 
facilities or to assess the number of persons with 
COVID-19 who are wrongly released into the 
community and continue to infect others. Thus, the 
detection measures cannot be useful for practical 
planning of public health measures. By contrast, 
diagnostic measures, which are explained below, 
can be used for these purposes. 

Diagnostic Measures of Clinical and Public 
Health Importance 
The application of a diagnostic test to a patient 
(target) population utilizes a 2×2 table (Table 2). To 
evaluate the effectiveness of the application of a 
diagnostic test in the patient population, the inves-
tigator first observes the outcome, i.e. the test re-
sults, and obtains information about the study fac-
tor, i.e. the disease status. 

 

(Eq. 2) 

(Eq. 3) 
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We use upper-case letters to describe screening 
in the patient population in a 2×2 table, Table 2. It 
is the data in this table that are of interest to the 
patient (and the physician) and public health offi-
cials, answering the following questions: (1) When 
the test is positive, what is the probability that the 
patient has the disease? (answerable by the positive 
predictive value [PPV]); (2) When the test is nega-
tive, what is the probability that the patient does 
not have the disease? (answerable by the negative 
predictive value [NPV]).  

In this clinical setting, the diagnoses are as yet 
unknown, and the test is used to diagnose COVID-
19 in individuals: the PPV and NPV are an estimate 
of the test’s ability to diagnose patients accurately 
in a population (based on the real disease preva-
lence), i.e. of the fractions of patients who are diag-
nosed correctly as positive or negative, respec-
tively. The PPV is the fraction (percent) of the posi-
tive tests in a given population that will correctly 
diagnose a COVID-19 patient. Similarly, NPV is the 
fraction (percent) of negative tests that will correct-
ly  diagnose a person who is not infected.  The frac-
tion (percent) of persons with a positive test who 
would not have the disease is the diagnostic false 
positive fraction (FPF), that is calculable as 

1FPF PPV= − . The fraction (percent) with a neg-
ative test result who have the disease and is diag-
nosed incorrectly as not having the disease is the 
diagnostic false negative fraction (FNF) calculable 
as 1FNF NPV= − . 

Both PPV and NPV depend on the proportion of 
the population that has the disease according to 
clinical or serological criteria, i.e. the prevalence of 
the disease. Thus, the PPV and NPV provide insight 
into the expected accuracy of the positive and the 
negative test results in a given population, by fac-
toring in the ability of the test to detect the disease 
and the prevalence of the disease in the population.  

Suppose that the same test were used in two 
different populations: population A with a higher 
disease prevalence and population B with a lower 
disease prevalence. Then, the PPV would be higher 
in population A than in population B, because the 
number of false positives would be a lower per-
centage of the total number of positive tests in pop-
ulation A. Similarly, the NPV would be higher in 
population A than in population B. 

Predictive summary index as a summary 
measure of diagnostic ability of a test in 
individuals 
A summary index, the predictive summary index 
(PSI, Ψ), is a measure of the additional information 
given by the test results, beyond the prior knowl-
edge (the prevalence of the disease).21 Note that the 
information from a positive test result beyond what 
is already known about the disease prevalence is 

−PPV Prevalence . Similarly, the information 
from a negative test result beyond what is already 
known about the probability of no disease (the prev-
alence of no disease) is ( )1NPV Prevalence− − . 

Thus, the overall information, i.e. the gain in 
certainty obtained after a test is performed, beyond 
what is already known, can be calculated as a sum-
mary measure: 

[ ]
( )

   =

1

1

= − +

+ − − =  
= + − =

Total gain in certainty
PPV Prevalence

NPV Prevalence

PPV NPV PSI

 

Alternatively, Ψ is a summary of the informa-
tion that is not derived from errors, FNF and FPF: 

1 ( )
1 [(1 ) (1 )]

1

= − + =
= − − + − =
= + −

PSI FPF FNF
PPV NPV

PPV NPV
 

If Ψ=1, the test is always correct: there are no 
errors, so that 0FPF FNF+ = ; i.e. the test detects 
correctly the sickness status. When 0PSI = , 

1PPV NPV+ = , and the test provides no overall 
information. In other words, the test is useless if 
the proportion of errors equals 100%; i.e. when 

1FPF FNF+ = , 0PSI = . For example, if the test 
results are random and the probability of both PPV 
and NPV is 50%, then the test is useless and PSI=0. 
When 1 0PSI− < < the test is misleading; i.e. the 
tests results are negatively associated with the true 
diagnosis. When 1Ψ = − , the test is always mis-
leading. 

The PSI can also be interpreted as the gained 
probability of correct diagnosis information, i.e. the 
difference between the joint probabilities of correct 

(Eq. 4) 

(Eq. 5) 
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diagnosis (positive or negative diagnosis) PPV*NPV 
and the joint probabilities of incorrect diagnosis 
FPF*FNF: 

( ) ( )
* *

* 1 * 1

* 1
*

PPV NPV FNF FPF
PPV NPV PPV NPV

PPV NPV NPV
PPV NPV PPV

− =

= − − − =  
= − + +
+ − = Ψ

 

PSI as a difference measure of a diagnostic 
test 
The PSI can be interpreted as the difference 
between the correct prediction of a disease by the 
test and a false negative result of the test in the 
target population. 

PSI PPV FNF= −  

Thus, PSI reflects the excess in the proportion 
of infected people in those with a positive result 
versus the proportion of infected people when the 
test is (falsely) negative.  

Similarly, one can also interpret PSI as 

PSI NPV FPF= −  

Here, PSI reflects the excess in the proportion of 
uninfected persons when the test yields a negative 
result versus the proportion of uninfected people 
when the test is (falsely) positive.  

The 1NND PSI=  is analogous to nns, to esti-
mate the number of patients who need to be exam-
ined in the patient population, in order to correctly 
diagnose one person (see Table 2). For example, 
this can be the number of people who would have 
to undergo a PCR test to correctly diagnose one 
person. This measure may be abbreviated as the 
“number needed to diagnose” (NND). This infor-
mation has public health importance. It also enables 
planning of test services to a specific population, 

based on the prevalence of the disease in this popu-
lation as well as on the technical characteristics of 
the test. 

CALCULATING THE DIAGNOSTIC 
ACCURACY MEASURES USING THE 
PREVALENCE AND THE DETECTION 
ACCURACY MEASURES 

The data in Table 1 are usually provided by the man-
ufacturer of a medical test, or obtained in a study 
with a sample of persons with or without the dis-
ease. Such a study does not reflect the prevalence of 
the disease in the general population because the 
ratio of the number of persons with the disease to 
the number of persons without it is artificially 
determined by the researcher. However, the data in 
a study that samples persons with positive or nega-
tive test results (Table 2) are often unavailable be-
cause it is impossible or unethical to follow up per-
sons with negative diagnostic test results. Thus it is 
necessary to calculate PPV and NPV from the data 
in Table 1, using the true prevalence of the disease. 

Such calculations can be performed using Bayes’ 
Theorem (see below for Eq. 9).4–21 

Using sensitivity=90%, specificity=90%, and 
Prevalence=1%, we get PPV=8.3%. 

A similar equation exists for calculating NPV. 

Alternatively, a table that reflects the real preva-
lence of the disease can be constructed, using the 
sensitivity and specificity, enabling PPV and NPV 
calculation (Table 3 in the following example). 

 

Example  
The following is an example for calculating PPV, 
NPV, PSI, and NND using data on the prevalence of 
the disease and given data on the sensitivity and 
specificity of the test (Table 3). 

(Eq. 6) 

(Eq. 7) 

(Eq. 8) 

( )( )

( )

*
* 1 1

*
* * 1

sensitivity PrevalencePPV
sensitivity Prevalence specificity Prevalence

sensitivity Prevalence
sensitivity Prevalence fpf Prevalence

=
+ − −

=
+ −

     (Eq. 9) 
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Suppose that a population of 1000 travelers is 
screened for COVID-19 using the PCR test, and that 
the prevalence of COVID-19 is 1% (which is an esti-
mated prevalence of asymptomatic persons in Israel 
who had been exposed to a person with COVID-19). 
Of the 1000 travelers, only 10 are COVID-19 pa-
tients, and 990 are free of the disease. If the sensi-
tivity is 90%, then 9 persons will be correctly diag-
nosed as infected with COVID-19 (and 1 person will 
not be diagnosed, false negative). If the specificity 
is 90%, only 891 persons will be diagnosed correct-
ly as free of COVID-19, but 99 travelers will be 
falsely diagnosed as having the disease and will be 
quarantined unnecessarily. The PPV is only 9/108= 
8.3%, and the FPF=91.7%. Thus, the fraction of 
false positive diagnoses is very high, and many per-
sons will be quarantined or denied a flight unneces-
sarily. On the other hand, the NPV is 99.9%, and 
there are only a few false negative diagnoses. The 
test will be very useful to diagnose person who are 
not sick with COVID-19, and may be helpful to en-
sure that passengers are without COVID-19. The 

PSI is 8.2%, which is a very low proportion of ad-
ditional information obtained by the test. However,  
this is very useful information. Indeed, more than 
12 tests will be needed to diagnose one person cor-
rectly, because of the high percentage of false posi-
tive tests. There were more than a billion United 
States passengers flying every year before the coro-
na pandemic. Thus, the tests may be very expen-
sive, and will impose significant personal hardship 
to persons with false positive diagnoses. However, 
it will be a useful test in order to make sure that no 
person with COVID-19 will board a flight. 

NND with a Changing Prevalence, Where 
Sensitivity and Specificity Equal 90% 

Table 4 summarizes NND with a changing preva-
lence, where sensitivity and specificity are 90%. 
The PPV is increasing and the NPV is decreasing 
with increasing prevalence. When the COVID-19 
prevalence is 1%, 5%, or 10% (most estimates in 
different countries and societies are in this range), 

Table 3. PPV, NPV, PSI, and NND calculated based on the 
Prevalence 1%, Sensitivity 90%, and Specificity 90%. 

  COVID-19  
  S+  

Sick 
S-  

Not Sick 
 

Test Results 

T+ 
Positive Test 

9 99 108 

T- 
Negative Test 

1 891 892 

  10 990 1000 
 

9 108 8.3%, 891 892 99.9%,= = = =PPV NPV  

91.7%, 0.1%FPF FNF= =  

1 0.082PSI PPV NPV= Ψ = + − =  

          
1 12.2

=
= =

NND Minimal Number Needed to be tested to diagnose correctly one person
PSI
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more than 12, 3, and 2 tests, respectively, are need-
ed to diagnose one person correctly. 

DISCUSSION 

We showed that using COVID-19 testing to enable 
re-opening of airports may have its limitations and 
should be considered with caution. When diagnos-
ing acute infection, it is important to avoid a false 
positive result that would unjustifiably quarantine 
a person and all persons that this person has met. 
It is equally important to avoid false negative diag-
noses, because this can falsely reassure actual pa-
tients and hinder appropriate contact tracing and 
isolation. False positives and false negatives may 
have different implications for public health policy. 
Indeed, false positive test results may lead an actu-
ally healthy person to be wrongfully quarantined or 
retested, which is of cause inconvenient, infringing 
on personal freedom of travel, and somewhat cost-
ly. However, false negatives are much more damag-
ing to society as a whole, as sick persons, by re-
maining undetected, can spread the disease in the 
community or on a plane. These effects should be 
instrumented into the assessment models, perhaps 
by adjusting the indices with appropriate (subjec-
tive) weights for the PPV and NPV. 

The fraction of errors in diagnoses depends on 
the technical test characteristics, that is, the sensi-
tivity and specificity, and the prevalence of the dis-
eases in the population of interest. The prevalence 
can usually be obtained from national serological 

tests. Thus, a condition for planning a testing cam-
paign for acute diseases is to use serological tests 
that estimate the prevalence of past infection. 

For example, in the USA there are more than 
400,000 people who have had COVID-19. This is 
approximately 0.1% of the population. Clearly, this 
is an underestimate of the true prevalence of the 
disease due to under-testing and under-reporting. 
If the prevalence of the disease in the USA is 0.1%, 
then even if the test is very accurate technically and 
has a specificity and sensitivity of approximately 
90%, there is still a very low probability that a posi-
tive test is correct (PPV=0.9%), and approximately 
99.1% of results are false positive. Even a preva-
lence of 1%, 10 times higher than the official esti-
mate, would yield a PPV of 8.3% and 91.7% false 
positive results, with dire consequences to individ-
uals. However, false negative results, and the risk 
of onboard infection, would be only 0.1%. Never-
theless, negative tests need to be interpreted with 
caution, taking into account the pre-test probability 
of disease (the prevalence) because false negatives 
may lead to spread of COVID-19.  

The high number of tests that need to be per-
formed to diagnose one person correctly, as shown 
in Table 4, may lead to high costs in any routine 
screening program. 

The attempts to slow down the epidemic and 
control infections may lead to the use of tests with 
high sensitivity (and yielding fewer technical false 
negative results). However, we have shown that in 
a population with a low prevalence, these tests may 

Table 4. Example for PPV, NPV, PSI, and NND as a Function of 
the Prevalence with 90% Sensitivity and Specificity.* 

Prevalence 
(%) 

Estimated 
Prevalence PPV (%) FPF (%) NPV (%) FNF (%) PSI (%) NND=1/PSI 

1 Iceland, Israel: 
Asymptomatic 8.3 91.7 99.9 0.1 8.2 12.2 

5 Spain, Israel 33.1 67.9 99.4 0.6 31.6 3.2 

10  50.0 50.0 98.8 1.2 48.8 2.1 

30 New York City 79.4 20.6 95.5 4.5 74.9 1.3 

50 Almost Herd 
Immunity 90.0 10.0 90.0 10.0 80.0 1.3 

70 Herd Immunity 95.5 4.5 79.4 20.6 74.9 1.3 

90 Most Infected 98.8 1.2 50.0 50.0 48.8 2.1 

* This is an illustrative table. There are no reliable estimates of disease prevalence in various countries. 
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lead to a high percentage of false positive diagnoses 
and a need for multiple tests at high cost to achieve 
a correct diagnosis. 

We emphasize that in an RT-PCR test the RNA 
of the virus is detected, but not necessarily an in-
fective virus. Thus, even correct test results may be 
false positive results, with respect to infectious-
ness.20 The prevalence of a disease is measured by 
serological testing. However, it can take up to five 
days for an infected person to develop antibodies to 
SARS-CoV-2, and thus the prevalence may be 
underestimated. Repeated testing can also improve 
the accuracy of the overall testing program. 

We suggest caution in using COVID-19 testing 
in planning re-opening of airports. It seems 
prudent to recommend multiple testing of travelers 
with positive test results, together with obtaining 
information on previous exposure to persons with 
COVID-19 or being involved with populations that 
are known to have high prevalence of COVID-19. 
Using multiple quick and more accurate tests may 
be helpful before boarding an airplane. 
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