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ABSTRACT 

The surgical repair of complex congenital heart defects frequently requires additional tissue in various 
forms, such as patches, conduits, and valves. These devices often require replacement over a patient’s 
lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital 
cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving 
long-term outcomes of devices used to repair or replace diseased structural malformations. These 
technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal 
submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve 
implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); 
and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital 
cardiac surgical procedures. These new technologies for structural malformation surgery are still in their 
infancy but certainly present great promise for the future. But the translation of these emerging 
technologies to routine health care and public health policy will also largely depend on economic 
considerations, value judgments, and political factors. 
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INTRODUCTION 

Congenital cardiac surgery frequently requires 
additional tissue such as patches, conduits, and 
valves. These prostheses are characterized by a risk 
of degeneration, calcification, and a lack of growth, 
and usually need a replacement over a patient’s life-
time. The main new technologies in congenital 
cardiac surgery aim at improving long-term out-
comes of these devices and avoiding reoperations.  

NEW PATCHES: CORMATRIX® 
EXTRACELLULAR MATRIX PATCHES 

Despite improvements in congenital heart surgery 
procedural mortality, there remain a substantial 
number of patients who need multiple reinter-
ventions,1 because of the lack of growth potential 
and remodeling of currently used patches (auto-
logous pericardium (with or without glutaral-
dehyde), preserved xenopericardium, and various 
prosthetic materials). As a matter of fact, the ideal 
patch still does not exist. Such an ideal material 
would not interfere with the patient’s growth, would 
be pliable, soft, resistant to tearing, calcification, 
and shrinkage, and would possibly not induce 
remodeling of scar tissue. 

Recently, the CorMatrix® (CorMatrix Alpharetta, 
GA) patch made of decellularized porcine small 
intestinal submucosa extracellular matrix (SIS-
ECM) has been introduced into cardiac surgery. The 
extracellular matrix (ECM) is the acellular compon-
ent that surrounds cells in native tissues and is 
mainly composed of elastin, collagen (structural 
proteins), glycans (glycosaminoglycans, proteogly-
cans), and adhesion glycoproteins. These new 
patches have demonstrated patch remodeling and 
integration in animal models of cardiac surgery.2,3 
Wainwright et al.4 showed that right ventricular 
outflow tract (RVOT) reconstruction with SIS-ECM 
patches in a rat model resulted in new cardiac tissue 
formation in the patched areas and the absence of 
ventricular dilatation, when compared with Dacron 
reconstructions of the RVOT. 

These promising results in experimental studies 
have then been confirmed in human studies that 
specifically evaluated the outcomes of SIS-ECM in 
congenital heart surgery for cardiac and vascular 
reconstructions.5–7 Scholl et al.5 demonstrated in 
one case of an explanted patch used for augmenta-
tion of the tricuspid valve that SIS-ECM was 
replaced by organized collagen and populated with 

endothelial-like cells four months after the implant. 
Quarti et al.6 showed early encouraging results of 
these CorMatrix® patches used for vascular repair 
(pulmonary artery, ascending aorta, aortic arch, and 
right ventricular outflow tract), but also for valve 
reconstruction (aortic, tricuspid, mitral, and pul-
monary valves) and pericardial closure. Witt et al.7 
demonstrated that SIS-ECM is suitable for the clo-
sure of septal defects. But the use of SIS-ECM for 
the reconstructions of outflow tracts and great 
vessels in this study carried a small risk of stenosis, 
especially in patches that form the majority of the 
vessel circumference. Moreover these studies had 
rather a short follow-up. Another potential draw-
back of CorMatrix® ECM patches is the significant 
variability of the SIS-ECM biomechanical properties 
between different lots. Contrary to the Surgisis™ 
trial assessing the clinical use of SIS-ECM for 
carotid artery repair following endarteriectomy—a 
study that displayed an increased risk of aneurysm 
formation—the CorMatrix® lot did not display such 
a pejorative evolution even when implanted in high-
pressure systems. Nevertheless, the limited numbers 
of patients in studies dealing with the implantation 
of CorMatrix® in high-pressure systems prevent 
their authors from speculating regarding the long-
term effectiveness of the CorMatrix® in specific 
high-pressure locations. Long-term outcomes of 
these ECM patches depend not only on patch 
biomechanical properties, patch location, and hemo-
dynamic environment, but also on the patient’s 
immune response. Badylak et al.8 showed that the 
non-cross-linked SIS-ECM incited an immuno-
regulatory and proangiogenic macrophage response 
(leading to remodeling and repopulation of the 
patch) instead of an inflammatory, scar-forming 
response (potentially leading to stenosis). 

Porcine SIS-ECM is currently approved by the 
Food and Drug Administration (FDA) for use in 
humans. Nevertheless, large studies of the growth 
potential of the porcine SIS-ECM compared to other 
biomaterials used in cardiac surgery have not been 
conducted yet. 

To summarize, the CorMatrix® ECM displays a 
lot of potential advantages over other materials 
currently used in pediatric cardiac surgery, as 
follows: 

• Easily handled and implantable 
• Abundant 
• Durable (still controversial) 
• Minimal scar formation 
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• Remodeling of the material (no calcification) 

• Growth potential (still controversial) 

This new biomaterial seems to provide an 
interim bioscaffold that enables the patient’s own 
cells to repopulate and repair damaged tissues, 
which is of particular interest in patients with con-
genital heart diseases, for valve repair, and vascular 
reconstruction. But the long-term performance of 
the SIS-ECM in congenital cardiac applications still 
needs to be assessed through longitudinal studies of 
greater magnitude. 

NEW DEVICES 

Percutaneous Pulmonary Valve 
Implantation: The Melody® Valve 

The right ventricle (RV) to main pulmonary artery 
(PA) conduits that are used to reconstruct the right 
ventricular outflow tract in congenital heart diseases 
are prone to develop valvular incompetence and/or 
obstruction with time. These pejorative evolutions 
are associated with exercise intolerance, arrhyth-
mias, and an increased risk of sudden death9 and 
require multiple open-heart surgeries to replace the 
pulmonary valve. 

Percutaneous pulmonary valve implantation was 
introduced as a new treatment option in patients 
with dysfunctional conduits.10,11 This technological 
breakthrough aims at prolonging the lifespan of RV 
to PA conduits and thus postponing open-heart sur-
gery. The trans-catheter pulmonary valve (Melody®; 
Medtronic, Minneapolis, MN) is composed of a 
bovine jugular venous valve and a balloon-
expandable stent made of a platinum-iridium wire.  

The current largely accepted indications for the 
use of a Melody® valve include12: 

• A significant RVOT obstruction, defined as 
RV pressures > 2/3 of systolic blood pressure 
(SBP) with symptoms, or > 3/4 of SBP 
without symptoms 

• A severe pulmonary regurgitation and RV 
dysfunction or RV dilatation or impaired 
exercise capacity 

• Along with morphological criteria allowing a 
safe implantation site: RVOT dimensions < 
22 × 22 mm and > 14 × 14 mm  

The implantation procedure is standardized and 
safe, with a procedural mortality < 0.2%. The main 
complication to avoid during the implantation is 
coronary compression or occlusion, which can be 

evaluated by a pre-implantation balloon inflation in 
the RVOT. Other complications during implantation 
are the dislodgement of the device when implanted 
in distensible and dilated RVOTs and the risk of 
homograft rupture.  

Valve implantation significantly reduces the 
gradient across the outflow tract, RV pressures, and 
the pulmonary regurgitation,13 and significantly 
improves symptoms. 

Lurz et al.13 demonstrated that during a median 
follow-up of 28 months freedom from reoperation 
was 93% (±2), 86% (±3), 84% (±4), and 70% (±13), 
at 10, 30, 50, and 70 months, respectively. 

The main complications of the new generation of 
this innovative technology are late endocarditis and 
stent fractures in 20%.14 These stent fractures are 
silent in the majority of cases and are treated in 
symptomatic patients with RVOT stenosis by a 
Melody® valve-in-valve implantation.  

Pulmonary valve implantation is becoming the 
standard procedure in the treatment of dysfunc-
tional conduits. It has been accepted by the 
regulatory agencies for distribution and use in 
Europe in 2006 and US Food and Drug 
Administration in 2010.  

By prolonging the lifespan of RV–PA surgically 
placed conduits, this innovative technology has 
reduced the number of multiple open heart opera-
tions in children and young adults with congenital 
heart disease, and may improve their life expectancy 
and life quality. 

As with all evolving new technologies, new 
generations of Melody valves were created in order 
to reduce current limitations and extend the 
spectrum of potential clinical indications. Improve-
ments brought to the Melody® valve during the last 
few years of development or currently in progress 
include: 

• Device design improvements  

• Delivery system improvements  

• Patient selection improvements using three-
dimensional echography and MRI 

• Dilatation with high-pressure balloon after 
implantation (to reduce residual gradients) 

• Stent-in-stent implantation 

• Structural improvements to extend this 
technology to patients with native, dilated, 
and distensible RVOT 
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These principles of percutaneous valve implanta-
tion are currently investigated in other off-label 
clinical settings. For instance, valves developed for 
trans-catheter replacement of the aortic valve were 
implanted in the pulmonary position for patients 
with larger annulus.15 A new device allowing the 
implantation of a pulmonary valve in a RVOT 
previously repaired with a transannular patch is also 
currently investigated but not published yet.  

Tissue-Engineered Valved Conduits: 
Decellularized Scaffolds, Polymer 
Scaffolds, and in Situ Regeneration  

The ideal RV–PA conduit for reconstruction of the 
RVOT still does not exist. 

Cryopreserved homografts need a revision 
surgery in 36% and 90% of cases after 10 and 15 
years, respectively.16–18 Hancock conduits need to be 
replaced after 10 years in 68% of cases, and 50% of 
Carpentier–Edwards Perimount® (Edwards Life-
sciences, Irvine, CA, USA) valves (bioprosthetic 
stented valve made of bovine pericardium) 
implanted in children also have to be replaced after 
5 years.19 Children younger than 2 years old 
operated with a Contegra® Medtronic conduit have 
to undergo a revision surgery in 67% of cases for 
failure.20 The reoperations needed to replace a 
failing conduit carry a significant risk of mortality 
(1%–3%) and morbidity: hemorrhagic syndrome, 
cerebral vascular accident, coronary damage, 
cardiac rhythm alterations, or infection. These 

Table 1. Current Surgical Valved Conduits to Replace the Right Ventricular Outflow Tract. 

Current Surgical Devices Reoperation Rates Limitations Ref. 

Cryopreserved homografts 6%–58% at 5 years, 36%–90% at 
15 years, depending on the 
diameter, age at surgery, and 
heart defect 

• No growth potential 
• Immunogenicity and 

inflammatory response 
• Calcification 
• Structural degeneration 

• Limited availability  

18, 22 

Stented heterografts (e.g. 
Hancock® tube: porcine 
aortic heart valve in a 
tube made of Dacron®) 

19% at 5 years, 68% at 10 
years, 95%–100% at 15 years, 
depending on the diameter, 
age at surgery, and heart 
defect 

• No growth potential 
• Early calcification 
• Structural degeneration 
• Pannus formation 

• Excessive stiffness with anatomic 
compression/distortion 

23 

Stentless heterografts 
(e.g. Contegra® tube: 
bovine jugular vein) 

22%–40% at 5 years, depending 
on the diameter, age at 
surgery, and heart defect 

• No growth potential 
• Immunogenicity and 

inflammatory response 
• Stenosis of the distal anastomosis  
• Pseudoaneurysm of the proximal 

anastomosis  

• Severe conduit regurgitation 

24, 25 

Stentless heterografts 
(e.g. Shelhigh® tube: 
porcine pulmonary heart 
valve in a tube made of 
bovine pericardium) 

48%–67% at 1 year, depending 
on the diameter, age at 
surgery, and heart defect 

• Intimal peel formation at the 
distal segment  

• No growth potential 
• Immunogenicity and 

inflammatory response 

• Pseudoaneurysm 

26 

Mechanical valves Only in older children and 
adults 

• No growth potential 
• Anticoagulant therapy required 
• Thromboembolic complications 

27 
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complications translate into prolonged hospitaliza-
tion and attendant costs. Surgical techniques have 
improved during the last three decades, but conduit 
failure and morbidity and mortality still occur 
(Table 1). Autologous pericardial valved conduits for 
RVOT reconstruction showed superb properties, but 
data for long-term follow-up are lacking.21 

As a consequence of the limited treatment 
options and the requirements for repeat surgery in 
children as they grow, new alternatives were investi-
gated to reconstruct the RVOT. The advanced-
therapy medicinal products (ATMPs) derived from 
the concept of regenerative medicine are presently 
seen as one of the main routes to reduce the above-
mentioned risks, with the exception of organ 
transplantation.  

On the basis of these issues, the search for the 
ideal material to replace the RVOT started. The in 
vitro creation of autologous and living substitute 
materials by tissue engineering is based on the 
essential need for growth potential of materials to be 
used for surgical correction of congenital cardiac 
defects.  

In the last 15 years, different tissue-engineered 
materials have been proposed to replace the RVOT. 
Scaffolds were either decellularized allo- or xeno-
genic biological valved conduits or bioabsorbable 
prosthetic materials (poly-4-hydroxybutyrate 
(P4HB), poly-L-lactide (PCLA), polyglycolic acid 
(PGA)) designed in unvalved patches,28–32 non-
valved tubes,33–35 or valved tubes.36–40 

Decellularized scaffolds 

Dohmen et al. published an account of the first 
clinical implantation of a tissue-engineered heart 
valve in 200041: an in vitro seeded decellularized 
pulmonary allograft was implanted during a Ross 
operation in an adult patient. The 10-year clinical 
results of these tissue-engineered heart valves of the 
same group were promising despite a limited 
number of patients.42 Da Costa et al.43 demonstrated 
an excellent hemodynamic behavior and a signifi-
cant decrease in human leukocyte antigen (HLA) 
class I and II antigens in decellularized allografts 
compared with standard allografts. Nevertheless 
pejorative clinical outcomes of this technology were 
also reported: Simon et al.44 showed that the 
Synergraft technology failed in four grafts after 2 
days and 1 year post-implantation and that no 
recellularization of the decellularized grafts was seen 
at up to 1 year of follow-up. In 2010, Da Costa et al.45 

investigated the outcomes of decellularized aortic 
homograft implants as an aortic root replacement in 
41 patients. No reoperations were performed due to 
aortic valve dysfunction with a maximal follow-up of 
53 months. 

Polymer scaffolds and in situ regeneration 
concept  
The literature reports that polymer scaffolds were 
seeded (or not) with different types of autologous 
cells: endothelial cells, fibroblasts, myofibroblasts 
derived from peripheral vessels,28,32–35,36,37,39 smooth 
muscle cells derived from aorta or cardiomyocytes.29 
In vitro and in vivo studies (goats or adult syngenic 
rats) of these materials implanted in the RVOT 
demonstrated the biodegradation of the mater-
ial,28,29 the endothelialization of the surface of the 
material,30,37,38 the synthesis of an extracellular 
matrix,28,33,35,37,38,46 the absence of thrombus or 
stenosis,36 and a low risk of calcification. In 2006, 
Hoerstrup et al. proved, in a pioneering work, the 
growth potential of a bioabsorbable non-valved tube 
seeded with endothelial cells and fibroblasts im-
planted on the pulmonary artery in a growing lamb 
model during 100 weeks.47 Concomitantly to this 
biological progress, other synthetic polymers (poly-
L-lactic acid (PLLA),48 poly(epsilon-caprolactone) 
(PCL),49 poly(styrene-block-isobutylene-block-
styrene) (SIBS),50 poly(glycerol-sebacate) (PGS)51), 
and other biological materials (fibrin,52 collagen,53 
3D cardiac extracellular matrix,54 or hybrid mater-
ials55,56) were investigated to create tissue-
engineered scaffolds for heart valves. Some 
polymeric matrices were made “bioactive” through 
the implantation of growth factors on their surface 
(transforming growth factor beta, bone morpho-
genetic protein, and vascular endothelial growth 
factor).57,58 Other research groups investigated 
strategies of “homing” and immobilization of 
circulating host-derived cells.59 

Materials designed for RVOT reconstruction by 
tissue engineering using stem cells were first 
evaluated in vitro.60 They were bioabsorbable non-
valved patches or valved tubes (PGA+/- P4HB or 
PGA+PLLA). The first stem cells used were human 
bone-marrow cells that displayed a myofibroblastic 
differentiation and synthetized an extracellular 
matrix.61 In 2007, autologous peripheral blood-
derived endothelial progenitor cells and autologous 
bone-marrow-derived marrow stromal cells (MSC) 
were seeded on a bioabsorbable non-valved patch on 
the pulmonary artery of seven goats with a follow-up 
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of 6 weeks.62–66 This study showed the development 
of a living and organized tissue, integrated to the 
native pulmonary artery. The use of bioreactors for 
cell culture and maturation in dynamic conditions 
allowed for the maturation of the tissue-engineered 
device, the in vitro cell differentiation, and the 
formation of the extracellular matrix.67–72 A non-
invasive percutaneous method of implantation of 
tissue-engineered heart valves was described by Dr 
Hoerstrup’s group73 and by Emmert et al.74 From 
2002, the cells used have been derived from human 
umbilical cord blood, Wharton’s jelly, amniotic 
liquid, chorial villosities, or induced pluripotent 
cells seeded on non-valved patches or valved 
tubes.75–83 Even periodontal ligament cells cultured 
under steady flow environments demonstrated 
potential for use in heart valve tissue engineering. 

Materials made of co-polymer of poly(lactic acid) 
(PLA) and polycaprolactone (PCL), seeded with 
human bone-marrow cells, were implanted by 
Shin’oka et al. in 42 patients with congenital heart 
diseases in Japan between 2001 and 2005.84,85 The 
incidence of early stenosis led this group to go back 
“from bed to bench” to further understand the 
mechanisms of this type of early failure.86 

Prototypes of a bioabsorbable valve and valved 
tube created using PLLA reinforced with non-
absorbable polyester (PET) were assessed as tissue-
engineered devices to reconstruct the RVOT by the 
group of Menasché and Kalfa et al. (Figure 1). 

Table 2 summarizes the different types of 
synthetic polymers used in the research field of the 
right ventricular outflow tract. 

The concept of decellularization of tissue-
engineered heart valves, initially made of bio-
degradable synthetic materials and homologous 
cells, was then introduced to offer an alternative 
starter matrix for guided tissue regeneration.107 This 
decellularization phase of tissue-engineered heart 
valves was demonstrated not to alter the collagen 
structure or tissue strength; it also favored valve 
performance when compared to their cell-populated 
counterparts and could provide largely available off-
the-shelf homologous scaffolds suitable for 
reseeding with autologous cells. 

Key requirements and properties of those 
substrates were then discussed in the light of 
current trends toward designing biologically 
inspired microenvironments for in situ tissue 
engineering purposes.108 The concept of in situ 

tissue engineering, i.e. neotissue regeneration with-
out the use of seeded cells, could solve the disad-
vantages of using any cell source and achieve a 
versatile and easier cell-free protocol.109 The evalu-
ation of in situ tissue engineering vasculature (iTEV) 
by implantation of scaffolds made of polyglycolide 
knitted fibers and an L-lactide and ε-caprolactone 
co-polymer sponge in the inferior vena cava of a 
canine model supported this concept by demonstrat-
ing a native tissue-like histological regeneration, 
with acceptable biomechanical characteristics.110 

More recently, hundreds of polymers were 
comprehensively assessed for tissue engineering of 
cardiac valves, using polymer microarray tech-
nology.111 Biomechanical tests with real-time 
displacement and strain mapping were also recently 
reported to quantify biomechanical and biochemical 
properties of semilunar heart valve tissues, and 
potentially facilitate the development of tissue-
engineered heart valves.112 The role of substrate 
stiffness in modulating the gene expression and 
phenotype of neonatal cardiomyocytes in vitro113 or 
seeded human bone-marrow stem cells,114 on the 
one hand, and in modulating the activation of 
valvular interstitial cells,115 on the other hand, 
demonstrated the importance of the mechanical 
properties of materials used for valve repair or for 
engineering valve tissue.116 

Electrospinning appears in the literature as a 
promising technology to produce scaffolds for 
cardiovascular tissue engineering. Amoroso et al. 
evaluated the effect of processing variables and 
secondary fiber populations on the microstructure 
and the tensile and bending mechanics of electro-
spun biodegradable polyurethane scaffolds for heart 
valve tissue engineering.117 Computational tools 
were developed in order to describe and predict the 
mechanical behavior of electrospun valve-shaped 

 
Figure 1. A Global View of a Bioabsorbable Valve Made 
of Poly-L-lactic acid (PLLA) and Polyester (PET). 
Illustrations from D. Kalfa and P. Menasché’s group. 
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scaffolds characterized by different microstructures 
and showed that a pronounced degree of anisotropy 
was necessary to reproduce the deformation 
patterns observed in the native heart valve.118 

In the emerging field of tissue engineering and 
regenerative medicine, different design strategies 
were evaluated to promote the development and 
evaluation of improved tissue engineering scaffolds. 
These include mimicking the extracellular matrix, 
predicting the structural architecture, ensuring 
adequate initial mechanical integrity, modifying the 
surface chemistry109,110,119 and topography120 to 
provide cell signaling, and anticipating the material 
selection so as to predict the required rate of 
bioresorption.121 The biofunctionalization of poly-
meric scaffolds or decellularized native homografts 
with motifs (such as RGD, SDF-1α, fibronectin, 
collagen, CD33) led to encouraging results and could 
be an alternative way to the complex techniques of 
cell culture and cell seeding.109,110,122 Prokoph et al. 

demonstrated that sustained delivery of SDF-1α 
from proangiogenic hydrogels could effectively 
attract early endothelial progenitor cells (ePCs), 
offering a powerful means to trigger endogenous 
mechanisms of cardiac regeneration.122  

NEW FIELDS 

Antenatal Corrective Cardiac Surgery 

Embryology and fetal physiopathology of congenital 
cardiac defects support the idea that the natural 
progression of some malformations could be 
curtailed, or arrested altogether, by an intrauterine 
intervention on the developing heart. Moreover, 
prenatal diagnosis is performed more and more 
widely and precisely. This led to the idea of 
corrective interventions in the fetus, now regarded 
as a new frontier in pediatric cardiac surgery. Three 
types of cardiac surgical procedures have been 
performed so far in the fetus: aortic valvuloplasty in 

Table 2. Different Types of Synthetic Polymers Used in the Research Field of the Right Ventricular Outflow 
Tract. 

n.a.=not applicable 

Polymer Cell Type Animal Model Ref. 

Poly(ethylene glycol) (PEG) Human MSC, valvular interstitial 
cells (VIC)  

n.a. 87–91 

Poly(glycolic acid) 
(PGA)/Poly(lactic acid) (PLA) 

• Fibroblasts, epithelial cells 
(EC) and ovine VIC 

• Human fibroblasts, bovine 
aortic EC 

lambs (2 weeks) 92, 93 

PGA/Poly-4-hydroxybutyrate 
(P4HB) 

• Myofibroblasts, ovine EC 

• Stem cells, endothelial 
progenitor cells, and ovine 
valvular endothelial cells (VEC) 

lambs (20–100 weeks) 

94–98 

 • Human amniotic fluid-derived 
stem cells 

sheep (8 weeks) 

Polycaprolactone (PCL) Human myofibroblasts n.a. 99 

Poly(glycerol sebacate) 
(PGS)/PCL 

Human umbilical vein-derived 
endothelial cells (HUVEC) n.a. 100 

Poly(ester urea urethane) (PEUU) Smooth muscle cells (SMC) from 
rats n.a. 101–104 

Polydioxaneone (PDO) Ovine MSC lambs (1, 4, 8 months) 105 

Polycarbonate PCU– Polyhedral 
oligomeric silsesquioxanes (POSS) n.a. n.a. 106 
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hypoplastic left heart syndrome,123,124 atrial septos-
tomy to prepare surgery of the same syndrome after 
birth,125 and pulmonary valvuloplasty for pulmonary 
atresia and hypoplastic right ventricle. Central to 
progress in this area is the development of instru-
mentation specifically designed for minimally 
invasive cardiac surgery in the fetus, involving 
experts in microengineering and microrobotics. An 
“ideal” catheter for minimally invasive, fetal cardiac 
surgery should therefore be appropriately miniatur-
ized and implemented with sensors and driving 
systems. Some parts of the ideal “fetal catheter” are 
already available as a prototype.126 Such fetal 
“mechanical” surgical procedures could then be 
combined with fetal “biological” procedures such as 
implantation of an appropriate lineage of stem cells 
or any suitable growth-promoting factor inside the 
fetal ventricle wall. Collaborations with surgeons, 
cardiologists, imagers, and engineers will be manda-
tory to develop such new integrated technologies. 

Robotics 
Robotically assisted surgical procedures have been 
introduced into the field of cardiac surgery since the 
late 1990s. The da Vinci® Surgical System (Intuitive 
Surgical, Inc., Sunnyvale, CA) is the only US FDA-
approved system for intracardiac procedures. 
Robotics was first applied in pediatric cardiac 
surgery for extracardiac procedures such as patent 
ductus arteriosus ligation and vascular ring 
divisions.127–129 Robotically assisted repairs of atrial 
septal defect were then performed in children.131,132 
There has also been an on-going interest in 
developing image-guided techniques to perform the 
same types of intracardiac repairs currently done as 
open procedures, but without use of cardiopul-
monary bypass. To meet this objective, technical 
advances need to be achieved in two domains: the 
creation of instruments and devices providing tactile 
feedback and steerability, on the one hand,132 and 
high-resolution 3D real-time imaging, on the other 
hand.133,134 Thus, new catheter-like robotic delivery 
platforms have been described that facilitate safe 
navigation and enable complex repairs, such as 
tissue approximation and fixation, and tissue 
removal, inside the beating heart.135 

These new systems combined with enhanced 
imaging techniques may enable the advancement of 
the field of beating-heart intracardiac reconstructive 
interventions currently not feasible with available 
surgical and catheter-based robotic systems.136 

CONCLUSION 

These new technologies for structural malformation 
surgery are still in their infancy but certainly present 
great promise for the future. Further development of 
these technologies will depend on the collaboration 
among diverse medical specialties and the contribu-
tion from engineers with special skills. But the 
translation of these emerging technologies to 
routine health care and public health policy will also 
largely depend on economic considerations, value 
judgments, and political factors. 
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