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ABSTRACT 

Traditional coronary artery disease (CAD) risk scores offer limited precision, often failing to capture the 
complex, multifactorial nature of the disease. The proliferation of multimodal data from imaging, genomics, 
electronic health records (EHRs), and wearables offers a transformative opportunity for more individual-
ized risk prediction. This narrative review systematically maps and critically evaluates the landscape of 
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multimodal data fusion for CAD risk prediction. Following Preferred Reporting Items for Systematic reviews 
and Meta-Analyses guidelines, we synthesized 39 empirical studies published from 2009 to 2025 to identify 
key methodological patterns, informatics challenges, and future directions. Our synthesis reveals consistent 
methodological patterns: (1) integrating imaging biomarkers (e.g. coronary computed tomography angiog-
raphy, coronary artery calcium scoring) with clinical data robustly enhances risk discrimination and reclas-
sification; (2) adding polygenic risk scores provides incremental value, typically via late-fusion models; and 
(3) leveraging longitudinal EHR data with machine learning captures dynamic risk trajectories, outperform-
ing static scores. Advanced machine learning architectures, particularly deep and graph neural networks, 
are pivotal for enabling automated feature extraction and modeling complex cross-modal interactions. 
Despite these advances, significant informatics hurdles persist, including data heterogeneity, algorithmic 
bias, the need for robust external validation, and challenges in clinical workflow integration. Multimodal 
data fusion is a cornerstone of precision cardiology, but realizing its clinical potential requires a concerted 
focus on developing fair, interpretable, and scalable methodological frameworks to translate complex data 
into improved patient outcomes. 

KEY WORDS: Artificial intelligence, coronary artery disease, multimodal data fusion, precision 
medicine, risk prediction 

 

 

INTRODUCTION 

Coronary artery disease (CAD) remains a leading 
cause of morbidity and mortality worldwide. Accu-
rate risk prediction of CAD events (such as myocar-
dial infarction, stroke, or cardiac death) is essential 
for guiding preventive therapies. Traditional risk 
scores (e.g. Framingham Risk Score, Pooled Cohort 
Equations) rely on a limited set of clinical variables 
(age, blood pressure, cholesterol, etc.) and provide 
population-level estimates. However, these models 
often underperform at the individual level, partly 
because they ignore the vast wealth of patient-specific 
data now available.1 This data deluge, encompassing 
structured and unstructured information from di-
verse sources such as electronic health records 
(EHRs), laboratory tests, advanced imaging, genetic 
profiling, and wearable sensors, presents a formida-
ble informatics challenge: how to optimally integrate 
these heterogeneous data streams to extract mean-
ingful, predictive patterns that elude simpler mod-
els.1 The human mind cannot easily assimilate and 
weigh all these disparate data streams in a non-linear, 
dynamic fashion. This gap between data generation 
and clinical utilization has spurred interest in multi-
modal data fusion approaches, often leveraging arti-
ficial intelligence (AI) and machine learning (ML), 
to improve precision risk prediction in CAD.1 

Precision medicine aims to tailor healthcare 
decisions to the individual by incorporating their 
unique profile (phenotype, genotype, environment, 
behavior).2,3 In the context of CAD, this means mov-

 

ing beyond one-size-fits-all risk algorithms to models 
that integrate multiple sources of information for 
each patient. By fusing data such as imaging bio-
markers of atherosclerosis, genomic risk scores, 
longitudinal EHR data, and even real-time signals 
from wearable sensors, researchers hope to achieve 
more personalized and accurate risk stratification.1,4 
Early studies suggest that such multimodal integra-
tion can indeed improve predictive performance, 
albeit modestly, over single-modality models.5 
Moreover, multimodal approaches can methodolog-
ically capture complex interactions and temporal 
dynamics (e.g. changes in risk factors or imaging 
findings over time) that static models cannot.1 

This narrative review provides a critical synthesis 
of advances in multimodal biomedical data fusion 
for CAD risk prediction over the past ~15 years. We 
aim to deconstruct common informatics approaches, 
evaluate the efficacy of different fusion techniques, 
and offer generalizable insights for the biomedical 
informatics community working on complex disease 
risk prediction. We summarize the key data modali-
ties being integrated—including imaging (computed 
tomography [CT], magnetic resonance imaging 
[MRI], etc.), genomics, EHR data, and wearable 
device outputs—and the AI/ML methods enabling 
their fusion. We highlight major findings from high-
quality studies and landmark trials, discuss meth-
odological challenges and current limitations, and 
outline future directions for this rapidly evolving 
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field. Crucially, we seek to identify common meth-
odological themes, persistent informatics challenges, 
and promising strategies that can inform the design 
and implementation of next-generation multimodal 
predictive systems in cardiovascular medicine and 
beyond. 

By synthesizing evidence from diverse sources, 
we aim to provide a state-of-the-art picture of how 
multimodal data integration is shaping precision 
cardiovascular risk prediction in the era of big data 
and AI. While several existing reviews address AI in 
cardiology or specific data modalities for cardiovas-
cular disease, this narrative review offers a distinct 
contribution by providing a comprehensive synthesis 
and critical evaluation specifically focused on the 
methodological underpinnings and informatics chal-
lenges of data fusion strategies themselves, across a 
broad spectrum of modalities (imaging, genomics, 
EHRs, wearables) for CAD risk prediction over the 
past 15 years. We uniquely deconstruct common in-
formatics approaches, analyze emergent methodolo-
gical patterns in fusion techniques (including AI/ML 
algorithm choices, feature extraction, and model 
validation), and offer generalizable insights into the 
development and application of these complex pre-
dictive systems. This work seeks to fill a gap by not 
only summarizing advances but also by critically 
assessing the methodological evolution and future 
informatics imperatives necessary to translate these 
powerful tools into robust clinical applications. 

METHODS 

Objective and Scope 
We conducted a narrative review of empirical multi-
modal fusion strategies for CAD/atherosclerotic car-
diovascular disease risk prediction and diagnosis, 
prioritizing studies that integrated ≥2 distinct data 
modalities (e.g. imaging+clinical/EHR, polygenic 
risk score (PRS)+clinical, signals+clinical) and re-
ported predictive performance. 

Information Sources 
We searched PubMed/MEDLINE and PubMed 
Central (clinical and imaging sciences), IEEE Xplore 
(engineering and machine learning), Cochrane 
CENTRAL (trial registry), and Crossref (online-
ahead-of-print/DOI completion) in the time window 
of January 1, 2009 to June 1, 2025; earlier landmark 
studies were retained when essential. 

Search Strategy 

Search strings combined Medical Subject Headings 

and free-text terms around multimodal fusion, 

CAD/atherosclerotic cardiovascular disease, AI/ML, 

and modality terms (coronary computed tomogra-

phy angiography [CCTA], coronary artery calcium 

[CAC], computed tomography-derived fractional 

flow reserve [CT-FFR], cardiac magnetic resonance 

[CMR], single-photon emission computed tomogra-

phy [SPECT]/positron emission tomography, elec-

trocardiogram [ECG], genomics/PRS, EHR, wear-

ables). The following filters were used: humans; 

English; 2009–2025. 

Eligibility Criteria  

Inclusion criteria for our literature search were: (1) 

empirical human studies integrating ≥2 modalities; 

(2) CAD/atherosclerotic cardiovascular disease 

diagnosis or incident outcomes; (3) reported model 

performance (area under the curve [AUC]/con-

cordance index [C-index] with or without 95% confi-

dence interval [CI]), calibration, and—if available—

reclassification (net reclassification improvement/ 

integrated discrimination improvement [IDI]); and 

(4) internal and/or external validation.  

Exclusion criteria were: single-modality studies; 

non-human; editorials/reviews/guidelines/ methods-

only; studies lacking predictive/diagnostic perform-

ance; non-CAD outcomes. 

Study Selection 

Two reviewers independently screened titles/ 

abstracts, followed by full-text assessment; disagree-

ments were resolved by consensus. A Preferred 

Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) flow diagram (Figure 1) summar-

izes identification, screening, eligibility, and inclu-

sion. 

Data Extraction 

We captured country/setting; N (events); modali-

ties; endpoint and horizon; fusion strategy (early/ 

intermediate/late); algorithm(s); validation; dis-

crimination (AUC/C-index, 95% CI); calibration; 

reclassification (NRI/IDI); and overall risk of bias 

using Prediction model Risk Of Bias Assessment 

Tool (PROBAST). 
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Risk of Bias PROBAST 

Determination of risk of bias was applied across do-
mains (participants, predictors, outcome, analysis). 
Ratings were mapped to low/moderate/high. Over-
all, most included studies were rated at a “Medium” 
risk of bias, primarily driven by a lack of rigorous 
external validation on independent, diverse cohorts. 
A detailed breakdown of the PROBAST assessment 
for each study is provided in Supplementary Table 1. 

RESULTS AND DISCUSSION 

After applying the inclusion and exclusion criteria 
(Figure 1), a total of 39 studies were selected for this 
review. Findings are presented as a representative 
table of 12 studies in Table 1, and a complete harmo-
nized supplement (Table S1) covering all 39 in-
cluded studies. Key performance gains, such as me-
dian change in the area under the curve, were de-

rived by synthesizing data from the subset of studies 
in Supplementary Table 1 that directly reported per-
formance metrics for both a single-modality base-
line model and the fused multimodal model. 

Rationale for Multimodal Data Integration 

in CAD Risk Assessment 

Current risk stratification largely focuses on a nar-
row set of variables, failing to exploit the “wealth of 
insights lying at various intersections of patient 
data.”4 For instance, a standard risk calculator might 
consider a patient’s age, sex, smoking status, blood 
pressure, and cholesterol—but not their coronary 
calcium score, genetic predisposition, or daily exer-
cise patterns. In reality, CAD risk is influenced by a 
confluence of factors spanning biological, clinical, 
and lifestyle domains. Multimodal data fusion refers 
to the integration of multiple heterogeneous data 
types into a unified predictive model.2 From a meth-

 

Figure 1. PRISMA Flow Diagram for the Literature Search (2009–2025). 

ASCVD, atherosclerotic cardiovascular disease; CAD, coronary artery disease. 
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Table 1. Representative multimodal CAD studies included in the main text (n=15). 

First 
Author 
(Year)ref 

Modalities 
Fusion 

Strategy 
Algorithm(s) Validation AUC/C-index Key Contribution 

Motwani 
et al. 
(2017)6 

CCTA + 
clinical 

Late XGBoost External AUC = 0.79 Benchmark ML 
model for 5-year 
CAD risk 

Betancur 
et al. 
(2018)7 

SPECT MPI + 
clinical 

Late Deep CNN External AUC = 0.81 AI-enhanced 
perfusion imaging 
fusion 

Sun et al. 
(2021)8 

PRS + 
clinical 

Late Cox regression Internal C-index = 0.722 PRS-enhanced 
model with public 
health simulation 

Lin et al. 
(2022)9 

CCTA + PET 
perfusion 

Early Deep learning Internal AUC = 0.84 Dual-modality 
imaging fusion for 
ischemia prediction 

King et al. 
(2022)10 

PRS + 
clinical 

Late Cox regression Internal HR stratification Genetic + clinical 
fusion with risk 
stratification 

Vassy et 
al. 
(2023)11 

PRS + 
clinical 

Late Cox regression Internal NRI = 0.38% (men) Multi-ancestry PRS 
fusion with modest 
gain 

Li et al. 
(2024)12 

EHR time 
series 

Early Transformer Real-world AUC = 0.87 Temporal modeling 
of structured 
clinical data 

Zhan et 
al. 
(2024)13 

PCAT + FAI 
+ clinical 

Late ML + logistic 
regression 

Internal AUC = 0.83 / 0.71 Segmental PCAT 
fusion with 
inflammation 
profiling 

Pezel et 
al. 
(2025)14 

CCTA + CMR 
+ clinical + 
ECG 

Early LASSO + XGBoost External AUC = 0.86 Rich multimodal 
fusion with strong 
external validation 

Zhang et 
al. 
(2025)15 

Face + 
tongue + 
waveform + 
lab 

Early Transformer + 
adaptive weighting 

External Accuracy = 85% Non-traditional 
multimodal fusion 
with novel 
architecture 

Gabriel et 
al. 
(2025)16 

CAC + ECG + 
lab + 
clinical 

Late XGBoost + SHAP External AUC = 0.883 Multi-source 
structured data 
fusion for 10-year 
MACE 

Zou et al. 
(2025)17 

PCAT 
radiomics + 
CT-FFR + 
clinical 

Early LASSO + LDA Internal AUC = 0.886 Lesion-specific 
imaging fusion with 
clinical 
enhancement 

AI, artificial intelligence; AUC, area under the curve; CAC, coronary artery calcium; CAD, coronary artery disease; 

CCTA, coronary computed tomography angiography; C-index, concordance index; CMR, cardiac magnetic resonance; 

CNN, convolutional neural network; CT-FFR, computed tomography-derived fractional flow reserve; ECG, 

electrocardiogram; EHR, electronic health record; FAI, fat attenuation index; HR, hazard ratio; LASSO, Least 

Absolute Shrinkage and Selection Operator; LDA, linear discriminant analysis; MACE, major adverse cardiovascular 

events; ML, machine learning; MPI, myocardial perfusion imaging; NRI, net reclassification improvement; PCAT, 

pericoronary adipose tissue; PET, positron emission tomography; PRS, polygenic risk score; SHAP, SHapley Additive 

exPlanations; SPECT, single-photon emission computed tomography; XGBoost, eXtreme Gradient Boosting. 
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odological standpoint, the premise is that each data 
modality provides complementary information, cap-
turing potentially orthogonal aspects of the disease 
process, and their combination can lead to richer 
feature representations and more robust model 
performance than any single modality alone. The 
informatics task is therefore to develop fusion tech-
niques that can effectively leverage this complemen-
tarity. This entire process, from heterogeneous data 
collection through the methodological core to an ac-
tionable clinical prediction, is conceptually illus-
trated in Figure 2. Indeed, a 2022 scoping review 
found that in studies comparing multimodal models 
to single-modality models, the multimodal approach 
achieved on average a 6.4% improvement in predic-
tive accuracy.2 While seemingly modest, this high-
lights a consistent methodological observation: the 
synergistic potential of integrated data. Such gains, 
often achieved through sophisticated ML approaches, 

can translate into significantly better risk stratifica-
tion at the population level by reclassifying many 
patients into correct risk categories.12 

There are several compelling reasons, rooted in 
informatics principles, to pursue multimodal risk 
models: 

 Complementary data sources: Different mo-
dalities capture different aspects of CAD risk, 
presenting both an opportunity and a meth-
odological challenge for integration. Imaging 
can quantify atherosclerotic burden (e.g. 
plaque volume or calcium) and ventricular 
function; genomics captures inherent genetic 
susceptibility; EHRs provide a longitudinal 
record of risk factors, comorbidities, and 
treatments; and wearables record real-time 
physiology and lifestyle indicators. Individu-
ally, each is an imperfect predictor, but to-

 

Figure 2. Conceptual Framework for Multimodal Data Fusion in Precision CAD Risk Prediction. 

Pivotal Methodological Shift in Biomedical Informatics for Cardiovascular Health. Ongoing Informatics Challenges and 

Future Research Directions Emphasized. 

Heterogeneous patient data sources—including imaging biomarkers (e.g. CAC, CCTA), genomic/PRS information, 

longitudinal EHR trajectories, and wearable-device/sensor signals—feed into an AI-enabled fusion engine that 

combines automated feature extraction with model architectures (e.g. CNNs, RNNs, GNNs) and explicit fusion 

strategies (early/intermediate/late), while addressing missingness, heterogeneity, and interpretability (XAI). The 

resulting models aim to improve discrimination and reclassification and to enable individualized, actionable risk 

assessment. Study-level performance metrics (AUC/C-index, calibration, and reclassification indices) are 

summarized in Table 1 and Supplementary Table S1.  

CAC, coronary artery calcium; CCTA, coronary CT angiography; CNNs, convolutional neural networks; EHR, 

electronic health record; GNNs, graph neural networks; PRS, polygenic risk score; RNNs, recurrent neural networks; 

XAI, explainable AI. 
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gether they provide a richer feature set for risk 
assessment.18–22 The methodological challenge 
lies in creating a unified model that can mean-
ingfully combine these disparate data types, 
which vary in structure, temporality, and scale. 
For example, coronary calcium on a CT scan 
directly measures atherosclerosis, while a PRS 
reflects lifelong genetic risk; integrating the 
two could identify an individual with high ge-
netic risk who has not yet developed calcified 
plaque, or vice versa. 

 Improved discrimination and reclassifica-

tion: Multimodal models have demonstrated 

higher discrimination (C-statistic/AUC) and 

better patient risk reclassification than tradi-
tional tools, representing a key methodolo-

gical advance. Early fusion modeling in cardi-

ology, which methodologically combined clin-

ical variables with imaging features, yielded 

superior prognostic performance compared to 

clinical scores alone.5–7 These improvements, 
while sometimes moderate, can be clinically 

meaningful—especially for borderline-risk 

patients where decisions (to start a statin, 

refer for further testing, etc.) are sensitive to 

risk estimates.1.12 From an informatics 

perspective, the ability of fused models to 
refine risk categories highlights their 

potential to enhance clinical decision support. 

 Capturing disease complexity and dynamics: 
CAD is a complex, multifactorial disease with 
non-linear interactions (e.g. diabetes exacer-
bating the effect of cholesterol, or genetics 
modulating response to lifestyle). Multimodal 
models, especially those based on AI, are 
methodologically better equipped to capture 
these interactions that traditional linear mod-
els often miss.3,23–26 They can also incorporate 
temporal data—for example, trends in blood 
pressure or cholesterol over time, or changes 
in plaque volume on serial scans—to reflect 
the evolving risk profile of a patient, a capa-
bility often lacking in static models.4,27 Li et 
al. demonstrated this by using repeated longi-
tudinal EHR measurements (vitals, labs) in a 
ML model that outperformed a single-time-
point risk score for predicting 5-year athero-
sclerotic cardiovascular disease.12 The ML 
model had a C-statistic of ~0.79 and showed 
improved calibration and decision curve utility 
over the guideline-recommended China-PAR 
risk equation. This study illustrates the meth-

odological advantage conferred by leveraging 
temporal EHR data, where the trajectory and 
variability of risk factors can significantly 
enhance prediction beyond single snapshot 
assessments.12 

Therefore, combining modalities is a logical step 
toward precision risk prediction—ensuring that each 
patient’s risk assessment leverages all available data 
about them, rather than only population-derived 
proxies. Below, we discuss each major data modality 
and the methodological implications of its integra-
tion into CAD risk models. 

Key Data Modalities for CAD Risk 

Prediction 

Imaging Biomarkers (CT, MRI, and 

Others) 

Cardiovascular Imaging. Cardiovascular imaging 
provides direct visualization of structural and func-
tional disease, making it a powerful tool for risk 
stratification. Methodologically, imaging biomarkers 
often represent quantitative or semi-quantitative 
features that offer a direct measure of the under-
lying pathology. In CAD, two non-invasive imaging 
approaches are prominent from an informatics 
integration perspective: CAC scoring and CCTA. 

Coronary artery calcium scoring by non-contrast 
CT quantifies calcified plaque in the coronaries; de-
cades of evidence have established CAC as one of the 
strongest predictors of future coronary events.28–30 
An elevated CAC (Agatston) score reclassifies risk 
beyond traditional factors and has been incorpo-
rated into prevention guidelines (e.g. as a tiebreaker 
for statin decisions).31 From an informatics stand-
point, CAC scores are relatively standardized nu-
merical values that can be readily incorporated into 
statistical or ML models. In asymptomatic individ-
uals, CAC can identify those at high risk even if 
clinical risk is moderate, and, vice versa, CAC=0 can 
downgrade risk (the so-called “power of zero”).5 By 
methodologically integrating CAC with clinical data, 
the Multi-Ethnic Study of Atherosclerosis (MESA) 
risk score was developed, demonstrating improved 
risk discrimination over clinical variables alone. As 
one study summarized, “Agatston calcium and MESA 
score are a powerful cardiovascular risk predictor” 
for future events.32 

Coronary computed tomography angiography 
visualizes both calcified and non-calcified plaque and 
any luminal stenoses. Traditionally used diagnos-
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tically, CCTA also possesses significant prognostic 
value.5 Beyond stenosis, plaque characteristics seen 
on CCTA (often termed “high-risk plaque” features, 
such as positive remodeling, low attenuation core, 
napkin-ring sign) confer incremental risk informa-
tion.33,34 For example, patients with high-risk plaque 
features on CCTA have higher rates of future acute 
coronary syndromes independent of stenosis severi-
ty.33 Coronary computed tomography angiography 
can thus identify individuals with vulnerable plaque 
who might benefit from aggressive therapy even if 
no severe stenosis is present.5 A key informatics ad-
vancement is the use of AI-driven tools to auto-
matically quantify plaque burden and subtype on 
CCTA, enabling the extraction of rich, quantitative 
imaging biomarkers for large-scale use in fusion 
models.35,36 For instance, an AI prototype can now 
output stenosis measurements and a Coronary 
Artery Disease Reporting and Data System classifi-
cation from CCTA images, and others can measure 
plaque volumes and detect features like low-
attenuation plaque.5 Such quantitative imaging bio-
markers, when combined with clinical and lab data, 
hold promise for refined, methodologically sound 
risk models. 

Echocardiography and cardiac MRI (CMR) 
provide additional functional biomarkers relevant to 
risk,5 particularly for heart failure and cardiomy-
opathies, which often coexist or contribute to CAD 
outcomes. Left ventricular ejection fraction is a well-
known prognostic marker.37,38 Left ventricular ejec-
tion fraction and other measures (global longitudi-
nal strain from echo, or late gadolinium enhance-
ment from CMR indicating scar) can thus enhance 
risk prediction beyond atherosclerotic burden 
alone.35 For example, in patients with dilated cardio-
myopathy, methodologically combining multipara-
metric CMR (fibrosis, function) with clinical data im-
proved prediction of sudden cardiac death.39 Auto-
mated CMR analysis using AI, which can rapidly 
derive ventricular volumes and function, is an im-
portant informatics development for supplying these 
metrics into risk models.5 Nuclear imaging (SPECT/ 
positron emission tomography perfusion) also pro-
vides ischemia and viability information; one study 
showed that fusing clinical variables with SPECT 
data yielded an AUC of 0.81 for predicting major 
adverse cardiovascular events, slightly better than 
0.78 with imaging alone, illustrating the additive 
value from a methodological fusion perspective.7,40 

Integration of Imaging with Other Modalities: 

Methodological Considerations. The additive value 

of imaging has been demonstrated in several fusion 
studies, highlighting a core principle in biomedical 
informatics: integrating direct phenotypic assess-
ments with other data types enhances predictive 
power. As noted, Motwani et al. showed significant 
gains by adding CCTA features to clinical risk fac-
tors.6 Likewise, Betancur et al. improved major ad-
verse cardiovascular events prediction by integrat-
ing SPECT findings with patient data.7 Al’Aref et al. 
combined clinical factors with the CAC score to 
predict obstructive CAD on CCTA, achieving a 
fusion model AUC of 0.88, outperforming the 
clinical model (0.77) and slightly exceeding imaging 
alone (0.87).40 These results underscore that while 
imaging biomarkers are often strong predictors, 
their optimal use, methodologically, is in concert 
with other patient information. In general, imaging 
adds a personalized “phenotypic” layer on top of 
clinical risk profiles—essentially measuring the 
disease process directly—and thus can substantially 
refine risk estimates when integrated appropriately 
within a robust informatics framework. 

Genomic and Molecular Data (PRS and 

Beyond) 

Genetic predisposition plays a significant role in 
CAD risk. Polygenic risk scores (PRS) aggregate the 
effect of many common genetic variants into a single 
score representing an individual’s inherited risk for 
CAD.41 Methodologically, PRS provide a static, life-
long estimate of genetic susceptibility. Over the past 
decade, researchers have developed and validated 
PRS for CAD that can stratify individuals by their 
genetic risk. For example, one analysis found that 
about 8% of the population have a polygenic profile 
conferring a ≥3-fold increased risk of CAD.42 Another 
study reported that people in the top quintile of a 
CAD PRS had ~90% higher relative risk of coronary 
events.43 These findings underscore that genetics can 
identify a subset of individuals with substantially el-
evated baseline risk from birth. Unlike most risk fac-
tors, the genome is fixed—making PRS a potentially 
powerful tool for early risk prediction, even before 
traditional risk factors manifest, a unique character-
istic from an informatics integration perspective.44 

The clinical utility of PRS is an area of active 
research and methodological refinement. A compre-
hensive review by Klarin and Natarajan concluded 
that the PRS predict incident CAD and can modulate 
the expected benefit from preventive therapies.41 For 
instance, individuals with high PRS derived greater 
absolute benefit from statin therapy, suggesting PRS 
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might help personalize preventive interventions. 
Polygenic risk scores are also being studied for guid-
ing decisions like earlier screening.41 However, PRS 
are not deterministic; they interact with environ-
ment and behavior. Notably, even those with high 
genetic risk can significantly cut their risk through 
healthy lifestyle changes.43 This interaction high-
lights the methodological imperative to integrate 
genetics with other data modalities. 

Integrating Genomics with Other Data: Methodo-
logical Approaches. The most straightforward fusion 
method involves adding PRS to established clinical 
risk models. Several studies have shown that incur-
porating PRS into clinical risk equations improves 
discrimination and net reclassification, demonstrat-
ing its incremental methodological value.41 For ex-
ample, Inouye et al. demonstrated that genome-
wide PRS added to traditional risk factors sig-
nificantly reclassified individuals’ 10-year CAD risk 
categories.44 Another study found that combining a 
PRS with a person’s CAC score provides complemen-
tary risk information: the PRS captures lifelong pre-
disposition, while CAC reflects accumulated disease.45 
Methodologically, this combines a static genetic 
marker with a dynamic phenotypic marker. In 
middle-aged adults, a high PRS can identify those at 
risk before they develop detectable coronary calcium, 
whereas CAC scoring can capture risk not explained 
by genetics.45 Indeed, recent work reported that 
both PRS and CAC were independent predictors of 
coronary events, and using them together yielded 
better risk discrimination than either alone.46 This 
type of multimodal genetic-imaging approach could 
be particularly useful for risk stratification in 
individuals with intermediate clinical risk. 

Beyond polygenic scores, other “omics” data are 
emerging, presenting new methodological opportu-
nities and challenges for informatics. Plasma prote-
omics and metabolomics can provide molecular 
fingerprints of disease activity.47 These have been 
used to generate proteomic risk scores, which, when 
combined with genomics and clinical data, might 
further refine risk stratification.48 However, such 
multi-omic integration is methodologically less 
mature compared to genomics and imaging.49 Gene–
environment interactions are also relevant: inte-
grating data on lifestyle with genetic risk can identify 
individuals whose genetic risk is being modulated by 
their behaviors.43 Overall, genomics adds a “baseline 
risk” anchor—stratifying individuals by inherent risk 
from an early age—which can be methodologically 

layered with dynamic clinical and imaging data that 
accumulate over time.50 As informatics tools for 
genomic data mature and costs fall, genomic data 
will likely be increasingly integrated into routine 
CAD risk assessments. 

Electronic Health Records and Clinical 

Data 

The EHR contains a trove of longitudinal patient in-
formation, including demographics, medical history, 
diagnoses, medications, vital signs, laboratory results, 
and physician notes. Traditionally, risk models only 
utilize a few selected variables from this rich source. 
Multimodal EHR-based modeling, as an informatics 
endeavor, aims to harness a much broader swath of 
EHR data, often longitudinally, for risk prediction.12 
Recent advances in data mining and ML have made 
it feasible to methodologically incorporate dozens or 
even hundreds of EHR features simultaneously into 
a predictive model.51 For example, algorithms can be 
fed a patient’s entire history of lab values, vital signs 
over time, and medication records.12 

A prime example is the study by Li et al. involv-
ing over 200,000 Chinese adults.12 They extracted 
25 repeated clinical measurements per person over 
time and used ML (eXtreme Gradient Boosting and 
Least Absolute Shrinkage and Selection Operator 
regression) to predict 5-year atherosclerotic cardio-
vascular disease events. The model achieved a C-
statistic of ~0.79 and showed significantly improved 
calibration and decision curve analysis compared to 
the guideline-based China-PAR risk score. Although 
AUC gains were modest (~0.03–0.04), the improve-
ment in risk classification is impactful. This study 
methodologically illustrates how mining temporal 
EHR data (trajectories and variability of risk factors) 
can enhance prediction beyond static models. 

Another dimension of EHR data for informatics 
exploration is unstructured text, such as clinical 
notes and reports.1 These often contain valuable 
insights not captured in structured fields. Natural 
language processing algorithms can convert free text 
into features for risk models, representing a signifi-
cant methodological tool.52 For instance, a natural 
language processing pipeline might identify men-
tions of “angina” as additional risk indicators. The 
integration of such unstructured data with struc-
tured data is a frontier of multimodal fusion, with 
early work suggesting modest improvements in risk 
prediction and the potential to uncover novel risk 
factors.18–22,52 
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Electronic health record data fusion is central to 
the concept of a “learning health system,” where rou-
tine clinical data continuously feeds into risk models 
that update and improve methodologically over 
time.1 A key informatics challenge, however, is stan-
dardizing and cleaning EHR data, as it can be frag-
mented and suffer from missingness. Methodologies 
like data imputation and generative models (e.g. 
generative adversarial networks to fill missing lab 
values) have been explored to address this.53–55 

Integration of EHR with Other Modalities. In most 
multimodal models, clinical/EHR data serve as the 
foundational layer. Methodologically, this integra-
tion occurs across several dimensions. First is the 
use of baseline structured data (demographics, diag-
noses, baseline labs) which provide essential context; 
for example, the presence of diabetes or hyperten-
sion profoundly influences the interpretation of a 
given CAC score or gene variant. 

Second, and more powerfully, is the methodo-
logical strength of using longitudinal EHR data. 
Static, single-time-point models are being outper-
formed by ML models that integrate repeated mea-
surements over time. A prime example is the study 
by Li et al. which integrated demographics, medica-
tions, and irregularly repeated laboratory and phy-
siological measurements from over 200,000 adults.12 
Their ML model demonstrated improved 5-year 
atherosclerotic cardiovascular disease prediction 
over the guideline-recommended Cox model (C-
statistic ~0.79), primarily by capturing the trajec-
tory and variability of risk factors.12 

Third is the exploration of unstructured data 
using natural language processing to extract features 
from clinical notes (e.g. mentions of “angina”), 
which may offer modest improvements. 

Finally, EHR data are commonly used in late-
fusion strategies with other modalities. For example, 
Zhao et al. demonstrated an EHR-genetic late fusion 
model for predicting CAD events, which outper-
formed using EHR data alone, illustrating one meth-
odological approach to merge these data types.56 

Wearable and Sensor Data 

The proliferation of wearable devices has introduced 
a new modality for risk assessment: continuous or 
high-frequency monitoring of physiological and be-
havioral markers. From an informatics perspective, 
data from wearable devices represent high-velocity, 
high-volume time-series data that can capture as-

pects of health and lifestyle difficult to measure in 
clinic visits—e.g. daily step count, heart rate vari-
ability, sleep patterns, and arrhythmias. These fac-
tors can modulate CAD risk and may serve as early 
warning signals. For instance, wearables provide a 
quantifiable window into parameters like physical 
activity and sleep, which are linked to cardiovascular 
risk. 

Several studies and prototypes have explored 
methodologically integrating wearable sensor data 
into cardiovascular risk models. Ali et al. proposed a 
comprehensive smart healthcare monitoring system 
for CVD prediction that fuses electronic medical 
record data with wearable sensor data.57  Their con-
ceptual framework outlines how vital signs and bio-
signals from wearables (ECG, blood pressure, etc.) 
are continuously collected and combined with 
medical records to generate dynamic risk alerts, 
highlighting the informatics challenge of real-time 
data integration and analysis. Zhang et al. developed 
a tool to triage acute chest pain by early fusion of 
multimodal signals—ECG, heart sounds, echocardi-
ography, Holter data, and biomarkers—demonstrat-
ing the feasibility of merging wearable-device data 
with imaging and labs for acute risk stratification.58 
Similarly, Li et al. combined ECG and phonocardio-
gram features, showing that this dual-sensor ap-
proach methodologically improved prediction over 
single-sensor models.59 

In terms of outcomes, some studies have linked 
wearable-derived metrics to hard events. Persistent 
tachycardia or reduced heart rate variability can sig-
nal higher risk. Large-scale projects like the Apple 
Heart Study hint at how wearables could identify at-
risk individuals. Future integration may include data 
from continuous blood pressure and glucose moni-
tors. One study showed wearable sensor data could 
predict certain lab test abnormalities, suggesting it 
reflects underlying physiology relevant to cardiovas-
cular stress, an interesting avenue for informatics 
exploration.60 

Methodological Challenges and Opportunities with 
Wearables. Data from wearable devices are inher-
ently noisy and highly individualized, posing signi-
ficant informatics challenges in ensuring data qual-
ity, handling missing periods, and minimizing false 
alarms. However, AI models, especially deep learn-
ing, are methodologically well-suited for finding 
signals in noisy time-series data. Recurrent neural 
networks or transformers can ingest long sequences 
of sensor readings to detect subtle patterns indica-
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tive of risk. Integrating wearable-device data with 
EHR data is a new methodological frontier; an AI 
model could potentially flag patients for higher near-
term risk based on anomalous trends in wearable-
device data. In summary, wearable devices provide a 
continuous, lifestyle-integrated data modality that 
complements traditional data sources. When fused, 
wearables could help capture the impact of daily 
behaviors and early physiological changes on CAD 
risk, making risk prediction more dynamic and per-
sonalized—potentially evolving into a living risk 
score. While direct outcome prediction evidence is 
still emerging, the incorporation of wearables into 
risk models is a promising area for future infor-
matics research. 

AI and ML Techniques for Multimodal 

Fusion 

Integrating diverse data types into a cohesive predic-
tive model is a complex informatics task. Machine 
learning and AI methods are the linchpin enabling 
effective multimodal data fusion for CAD risk pre-
diction. Unlike traditional regression techniques, 
which often struggle with high-dimensional, hetero-
geneous inputs, modern ML, especially deep learning, 
can handle large multimodal feature spaces and un-
cover complex non-linear relationships.61 These ca-
pabilities are crucial for advancing beyond simplistic 
models to those that truly reflect the multifaceted 
nature of CAD. Here, we outline key methodological 
approaches and advancements in this domain. 

Early versus Late versus Intermediate 

Fusion: Methodological Considerations 

In ML parlance, early fusion involves concatenating 
all input data (after appropriate preprocessing) and 
feeding it into a single model. Late fusion entails 
building separate models for each modality and then 
combining their predictions.5 Intermediate (mid-
level) fusion involves merging data at an interme-
diate layer, for example, by combining learned fea-
tures from separate sub-networks dedicated to each 
modality.62 Each strategy presents distinct methodo-
logical advantages and disadvantages. Early fusion, 
by concatenating inputs, methodologically allows for 
the model to learn cross-modal interactions from 
the raw (or minimally processed) data but can lead 
to very high-dimensional feature spaces. This poses 
optimization challenges and increases the risk of 
overfitting if not managed with appropriate regular-

ization techniques or sufficiently large datasets. 
Conversely, late fusion is architecturally simpler and 
preserves modality-specific performance as each 
sub-model optimizes on its data; however, it meth-
odologically risks missing synergistic feature inter-
actions that might only be apparent when features 
are combined at earlier stages. Intermediate fusion 
offers a methodological compromise, aiming to learn 
modality-specific representations in initial layers 
before merging them in deeper layers, thus enabling 
both specialized feature extraction and joint inter-
action modeling.2 The choice of fusion strategy is 
therefore a critical methodological decision, contin-
gent on dataset characteristics, the nature of inter-
modal relationships, computational resources, and 
the specific research question. In practice, many CAD 
fusion studies have utilized late fusion, often com-
bining outputs or risk scores via a meta-classifier.5 
However, there is an evident trend toward more 
integrated approaches like intermediate fusion, par-
ticularly with the rise of deep learning architectures. 

Deep Learning Architectures: A 

Methodological Paradigm for Fusion 

Deep learning has revolutionized data analysis in 
many fields, and its application to multimodal fusion 
in healthcare is a significant methodological advance-
ment. Convolutional neural networks (CNNs) excel 
at imaging analysis, while recurrent neural networks 
or transformers are well-suited for sequential data 
like time-stamped EHR entries or wearable-device 
time series. For multimodal fusion, researchers often 
construct multi-branch neural networks. This archi-
tecture represents a powerful methodological para-
digm, allowing for tailored processing of each data 
type (e.g. a CNN branch for CT/MRI data, a multi-
layer perceptron or transformer branch for tabular 
EHR data, and another for genomic data). These 
branches then merge (concatenate their learned fea-
ture representations) at some point to produce a uni-
fied prediction, inherently supporting intermediate 
fusion.5 Such architectures have shown success; one 
model combining clinical variables and CCTA images 
through deep learning improved risk prediction of 
mortality over models using either clinical or imag-
ing data alone. Another deep learning model fused 
fundus photography with patient demographics to 
predict CAD, employing a graph convolutional neu-
ral network  to handle the multimodal data struc-
ture, showcasing the flexibility of these advanced 
methods.5 



 

Multimodal Data Fusion for Precision of CAD 
 

 

Rambam Maimonides Medical Journal 12 October 2025  Volume 16  Issue 4  e0023 
 

Graph-Based Fusion: An Emerging 

Methodological Frontier 

An emerging technique is representing multimodal 
data within a graph structure, where nodes can rep-
resent patients or data elements (e.g. specific bio-
markers, genetic variants, clinical events) and edges 
represent relationships or similarities between them. 
Graph convolutional neural networks, generally re-
ferred to as graph convolutional networks (GCN), 
can then learn representations from this graph, 
effectively fusing information in the process.35 This 
approach offers a natural way to represent and learn 
from complex relationships within and between dif-
ferent data modalities and patient entities. Huang et 
al. used a GCN to combine vascular biomarkers from 
retinal images with clinical characteristics to predict 
CAD, treating different data sources as intercon-
nected nodes.62 Methodologically, graph-based ap-
proaches are especially useful when data elements 
have inherent network structures (e.g. genes in path-
ways, patients in social networks) or when one wants 
to integrate knowledge graphs with patient data. In 
CAD, one could envision a graph where a patient 
node connects to nodes representing their risk fac-
tors, imaging findings, genetic variants, etc., and a 
graph neural network learns which connections are 
most predictive of outcomes.35 This is still a cutting-
edge approach but holds promise for integrating 
disparate data while preserving and leveraging com-
plex relationships, a distinct methodological advan-
tage over traditional feature vector-based methods. 

Handling Missing Data and 

Heterogeneity: A Core Informatics 

Challenge 

A ubiquitous methodological challenge in real-world 
multimodal datasets is that not every patient will 
have every data type (e.g. not all patients undergo 
MRI or genetic testing). Machine learning models 
must handle such missing modalities gracefully, and 
robust informatics solutions are crucial. Solutions 
include imputation techniques, which range from 
simple statistical methods to sophisticated ML-
based approaches for filling in missing values. Gen-
erative models, such as generative adversarial net-
works and variational autoencoders, can be trained 
to generate one modality from another—for example, 
to predict what a patient’s imaging might look like 
given their clinical profile. Methodologically, these 
generative approaches can learn the underlying data 
distributions and relationships between modalities 
to create plausible synthetic data, thereby allowing a 

full feature vector for every patient, though their use 
requires careful validation to avoid introducing 
bias.39 While not yet common in CAD risk modeling, 
these techniques could help utilize partial data more 
effectively. Another approach is to design models 
that can accept variable inputs, outputting a predic-
tion even if one modality is absent, perhaps with an 
associated uncertainty penalty. This flexibility will 
be crucial for real-world deployment, as complete 
data availability is rare outside curated research 
cohorts. 

Automated Feature Extraction: A 

Methodological Shift 

A barrier in earlier fusion studies was the need for 
manual feature extraction—e.g. a human or separate 
software had to quantify plaque from images or cu-
rate EHR variables, a labor-intensive process.39 New 
AI tools automate this, representing a significant 
methodological advancement. Computer vision can 
extract dozens of imaging features (volumes, tex-
tures, etc.) from CT/MRI, and natural language pro-
cessing can pull key concepts from text records.5 
This automation greatly expands the feasible feature 
set. As noted, CNNs can process raw images directly, 
eliminating manual selection of imaging biomark-
ers. Similarly, raw lab time-series can be input into a 
recurrent neural network without manual summari-
zation. This means multimodal models can consider 
“thousands of different parameters” to potentially 
identify novel predictive patterns.5 The downside is 
an increased risk of overfitting or learning spurious 
correlations when so many features are considered, 
necessitating larger training datasets and rigorous 
validation strategies.5 

Explainability and Model Interpretation: 

A Paramount Methodological Concern 

Given the “black box” nature of many advanced ML 
models, ensuring model interpretability is a para-
mount methodological concern, especially for clini-
cal acceptance and trust. Techniques like SHapley 
Additive exPlanations or integrated gradients can 
help interpret which features (or even modalities) 
are driving a specific prediction for an individual 
patient. For example, an explainable multimodal 
model might indicate that a high CAC score com-
bined with a high LDL level was the top contributor 
to a patient’s high-risk prediction, while for another, 
it might be a high PRS coupled with blood pressure 
variability. Such insights not only build trust that 
the model aligns with medical reasoning or can be 
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rationalized but can also reveal new risk factors or 
interactions. From an informatics perspective, de-
veloping and validating robust explainability meth-
ods for complex multimodal models is essential for 
facilitating clinical translation, ensuring responsible 
AI deployment, and potentially uncovering new 
scientific insights. 

To recapitulate, AI and ML techniques form the 
engine of multimodal data fusion, providing the 
methodological toolkit to handle complex, high-
dimensional, and heterogeneous data that traditional 
statistical models often cannot. The choice of fusion 
strategy (e.g. early, late, intermediate) and model 
architecture (e.g. multi-branch neural networks, 
GCNs) is a critical methodological decision, often 
tailored to the specific dataset characteristics, the 
nature of the data modalities, and the prediction 
task at hand. One survey indicated that early fusion 
was a common strategy in health ML literature and 
that multimodal models generally outperformed 
single-modality models. However, these advanced 
models also present challenges, such as the need for 
large training datasets and ensuring generalizability 
and interpretability, which are active areas of meth-
odological research. 

SUMMARY OF KEY STUDIES AND 

FINDINGS: EVIDENCING 

METHODOLOGICAL PROGRESS 

Multimodal risk prediction in CAD has transitioned 
from concept to proof-of-concept over the last 10–15 
years, with numerous studies providing crucial 
evidence for the viability and benefits of various 
fusion methodologies. Table 1 provides an overview 
of 12 representative studies that have integrated 
multiple data types for CAD risk prediction or re-
lated cardiovascular outcomes. These studies exem-
plify diverse informatics approaches to data fusion, 
including combinations of clinical, imaging, genomic, 
and wearable-device data. Each includes external 
validation and reports discrimination metrics (AUC/ 
C-index), highlighting consistent—though varied—
improvements in predictive performance and, where 
available, incremental gains over the best single 
modality (ΔAUC). The complete standardized data-
set of all 39 empirical multimodal studies, including 
detailed characteristics such as fusion strategies, 
calibration, reclassification, and PROBAST risk-of-
bias assessment, is provided in Supplementary 
Table 1. These studies, employing diverse data 
combinations and analytical techniques, collectively 

reinforce several key methodological insights into 
multimodal data fusion for CAD risk prediction. 

First, the consistent finding that integrating 
imaging with clinical data tends to yield higher 
prognostic performance than using either alone (as 
discussed previously regarding the fusion of imaging 
and clinical data6,7,40) validates a core tenet of multi-
modal informatics: the synergy achieved by combin-
ing direct phenotypic assessments (imaging) with 
broader clinical context. The improvements, ranging 
from substantial to modest in terms of AUC, consis-
tently point toward a positive methodological direc-
tion, demonstrating the value of fusing these specific 
data types.5 

Second, these studies showcase the exploration 
and proof-of-concept success of novel data combina-
tions and fusion methodologies. For example, the 
work by Li et al. combining ECG and heart sound 
signals illustrates how fusing data from different 
physiological sensor types can capture complemen-
tary information (electrical versus mechanical cardi-
ac signals), leading to improved predictive models.59 
Similarly, Huang et al. demonstrated a novel infor-
matics approach using a graph CNN to fuse retinal 
image features with demographics for CAD diagno-
sis, underscoring that non-obvious data sources, 
when methodologically integrated, can yield predic-
tive value.62 The work by Zhao et al. provides evi-
dence for the utility of late fusion methodologies in 
combining EHR data with genomics.56 

Third, a crucial methodological point highlighted 
by these studies is that even when gains in discrim-
ination metrics like AUC are small, improvements in 
calibration and risk reclassification are often ob-
served.12,52,63 For instance, Li et al. found that their 
EHR-based ML model offered better calibration and 
clinical net benefit than traditional scores, despite a 
relatively modest C-index increase.12 This is vital for 
clinical decision-making, as correct patient reclassi-
fication (e.g. from “low” to “intermediate” risk) 
based on a methodologically sound model can di-
rectly influence preventive interventions. 

Finally, it is important to note from a method-
ological standpoint that most multimodal models to 
date have been developed and evaluated on retro-
spective data, often from well-curated clinical trial 
cohorts or registries. While these studies are essen-
tial for establishing proof-of-principle and refining 
fusion methodologies, the subsequent steps of pro-
spective validation and assessment of real-world 
clinical impact (i.e. whether using these advanced 
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models actually prevents more events) are critical 
for translating these informatics innovations into 
routine practice. 

Nonetheless, the accumulating evidence from 
studies such as these provides a strong rationale that 
multimodal data fusion, as a methodological ap-
proach, improves risk prediction and can uncover 
high-risk individuals more accurately than tradition-
al methods.2,5 As more high-quality studies drawing 
on larger, more diverse datasets (e.g. UK Biobank) 
emerge, we anticipate the development of even more 
refined and robust multimodal fusion methodo-
logies and models. 

Challenges and Limitations: 

Methodological and Informatics Hurdles 

Despite its significant promise, the advancement 
and clinical translation of multimodal data fusion 
for CAD prediction face numerous challenges. These 
hurdles are not merely technical or practical; many 
are inherently linked to the complexities of working 
with human data and necessitate robust methodo-
logical and informatics solutions. Recognizing these 
limitations is crucial for contextualizing current 
results and guiding future improvements toward 
clinically viable and equitable systems. 

Data Silos and Integration Difficulties: A 

Fundamental Informatics Barrier 

Different data modalities often reside in separate, 
disconnected systems—imaging in picture archiving 
and communication systems, genomics in special-
ized lab reports, wearable-device data on consumer 
devices, and EHR data fragmented across various 
platforms. Merging these datasets requires substan-
tial effort in data linkage, standardization, and the 
development of robust informatics pipelines and 
interoperability standards.5 This lack of seamless in-
tegration has significantly slowed research progress 
and remains a primary barrier to real-world imple-
mentation of multimodal models. Methodologically, 
overcoming these silos is a prerequisite for assem-
bling the comprehensive, patient-centric datasets 
needed for developing and validating fusion models. 

Missing Data and Selection Bias: 

Methodological Complications 

In real-world clinical practice, not every patient 
undergoes every test or procedure. Consequently, 
multimodal datasets are often incomplete, posing a 
significant methodological challenge. Patients who 

have undergone advanced imaging or genetic testing 
may systematically differ from those who have not, 
introducing selection bias that can limit the general-
izability of models trained on such data. Missing mo-
dalities for some patients can force their exclusion 
from analyses or necessitate imputation. There re-
mains a risk that sophisticated multimodal models 
may only be applicable to a select subset of patients 
with complete data, potentially exacerbating health 
disparities. Designing models that degrade grace-
fully with missing inputs is a complex but important 
methodological goal. 

Need for Large, Diverse Datasets: 

Addressing Methodological Risks 

Multimodal models, by their nature, tend to incorpo-
rate a large number of features, sometimes hundreds, 
compared to traditional models. This high dimen-
sionality raises the methodological risk of overfitting, 
where a model learns spurious patterns specific to 
the training data that do not generalize to new, un-
seen patients. To counteract this, very large and di-
verse training datasets, encompassing thousands of 
events, are necessary to ensure models are robust and 
generalizable. Many published studies, however, 
have relied on relatively modest sample sizes, which 
limits their statistical power and the broader appli-
cability of their findings.5 While automated feature 
extraction is improving and large biobanks are be-
coming more accessible, the need for careful 
external validation on independent cohorts remains 
a critical methodological step to ensure models are 
not overly tuned to their development dataset. 

Interpretability and Validation of Findings: 

Core Informatics Imperatives 

Multimodal ML models, especially those based on 
deep learning, can often function as “black boxes,” 
making it difficult to understand how they arrive at 
specific predictions. This lack of transparency is a 
major concern for clinical adoption, as clinicians may 
be wary of relying on outputs from opaque models. 
There is also the risk of spurious correlations, where 
a model might identify patterns that are statistically 
predictive in the training data but not causally relat-
ed to the outcome. It is a methodological imperative 
to remember that correlation does not equal causa-
tion, and efforts should be made to understand why 
a model makes certain predictions, ensuring they 
align with clinical sense.1 Techniques in explainable 
AI offer promise, but their integration and valida-
tion for complex multimodal models in clinical work-
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flows are ongoing informatics challenges. Further-
more, regulatory bodies will likely require clear evi-
dence of safety, efficacy, and fairness, which is 
methodologically harder to demonstrate for complex 
AI systems than for traditional risk scores. As of 
2022, virtually no multimodal AI risk model for 
CAD had achieved regulatory approval or wide-
spread deployment in routine care.2 

Data Privacy and Implementation 

Challenges 

Combining sensitive data from multiple sources—
such as genetic information, detailed clinical histo-
ries, and continuous data from wearable devices—
amplifies concerns about patient privacy and data 
security. Genetic data are inherently sensitive, while 
data from wearable devices may be collected and 
stored outside the traditional clinical domain under 
different protection standards. Ensuring robust 
patient-consent mechanisms and secure data-
handling protocols across all modalities is a critical 
informatics and ethical requirement. 

Methodological innovations like federated learn-
ing, where models are trained across institutions 
without centralizing raw patient data, could help 
alleviate some privacy concerns while enabling the 
assembly of large datasets necessary for robust 
model development. 

Equity and Bias Considerations: A Pressing 

Methodological and Ethical Concern 

If not carefully addressed, multimodal models could 
inadvertently perpetuate or even worsen existing 
healthcare disparities. This risk operates at multiple 
levels. First, access to the data modalities themselves 
is inequitable. Advanced imaging (CCTA, CMR), ge-
nomic profiling, and wearable devices are less acces-
sible to underserved populations, including those in 
lower socioeconomic strata or rural settings com-
pared to their urban, high-income counterparts.19 
This creates a foundational data-availability bias. 

Second, this disparity directly impacts model im-
plementation and adoption. A model predominantly 
trained on data-rich patients from well-resourced 
academic centers will inevitably perform poorly or 
unfairly for patients with data sparsity, who are 
often among the most vulnerable.2 This can create a 
methodological vicious cycle: the models fail where 
they are needed most, leading to a loss of trust and 
lower adoption rates in disadvantaged communities, 

thereby amplifying the very health disparities they 
were intended to mitigate. 

Furthermore, underlying biases present in any 
single data source—such as racial biases in EHR 
documentation or the underrepresentation of non-
European ancestries in genomic reference panels—
can be inherited and potentially amplified by the 
fused model. As one review highlighted, there is a 
general lack of analysis on how multimodal ap-
proaches perform across diverse sub-populations.2 
It is therefore a methodological and ethical impera-
tive to ensure these models are rigorously evaluated 
in diverse cohorts and that steps are taken to miti-
gate bias. This may involve developing fairness-
aware algorithms or, as a crucial future direction, 
incorporating social determinants of health and 
environmental factors as explicit model inputs to 
create more context-aware and equitable predictive 
tools.20,21 

Maintenance and Monitoring: Ensuring 

Long-term Model Viability 

A deployed multimodal risk model is not a static 
entity; it will likely require regular recalibration and 
updating as clinical practice patterns, population 
characteristics, and treatment efficacies change over 
time. For example, as preventive therapies improve, 
baseline population risk may decrease, necessitating 
model adjustments to avoid overpredicting risk. 
Monitoring a model’s performance post-deployment 
and having a clear methodological framework for 
retraining or adjusting it are key components of safe 
and effective use. This requires an ongoing data col-
lection, curation, and model governance infra-
structure. 

Taken together, while multimodal fusion models 
show great promise, they also embody the principle 
that “with great power comes greater responsibili-
ty.”1 The biomedical informatics field must navigate 
these technical hurdles of data integration, ensure 
robust methodological validation to move beyond 
hype from underpowered studies, and address the 
practical and ethical issues of implementation. Many 
of these challenges mirror those seen in any AI 
application in healthcare but are amplified by the 
complexity of dealing with multiple, heterogeneous 
data types. Recognizing these limitations provides a 
clear roadmap for future research, improvement, 
and the careful translation of these advanced models 
from research settings to actual clinical benefit. 
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FUTURE PERSPECTIVES AND 

DIRECTIONS: ADVANCING THE 

INFORMATICS FRONTIER 

The coming years are likely to witness significant 
advancements in multimodal data fusion for CAD 
risk prediction, moving from retrospective validation 
to impactful clinical tools. This progression will be 
driven by methodological innovations and informat-
ics breakthroughs, demanding novel approaches from 
AI researchers and biomedical informaticians. Some 
key future directions and opportunities include: 

Prospective Clinical Trials and 

Implementation Studies: Methodological 

Imperatives for Real-world Validation 

To truly assess the impact of multimodal risk 
models, rigorous testing in prospective clinical set-
tings is essential. Methodologically, such trials must 
extend beyond predictive accuracy metrics to evalu-
ate improvements in patient outcomes (e.g. fewer 
heart attacks) and cost-effectiveness when these AI-
driven models guide interventions. For informati-
cians and trial designers, a key challenge lies in de-
veloping robust frameworks for seamlessly integrat-
ing these complex models into diverse clinical work-
flows and evaluating their real-world utility and 
adoption barriers through rigorous implementation 
science, an important allied field of informatics. 

Broader Data Integration: Expanding the 

Informatics Scope to “Total Lifestyle” and 

Environment 

Future models will likely seek to incorporate data 
beyond the traditional medical sphere, presenting 
new informatics challenges and opportunities in data 
representation, linkage, and modeling. As noted in a 
recent editorial, linking social determinants of health 
and environmental factors (e.g. neighborhood depri-
vation, air pollution) can enrich risk predictions.1 
Methodologically, this requires developing novel 
informatics techniques to quantitatively capture, 
harmonize, and integrate these highly heteroge-
neous, often unstructured or sparsely available, non-
medical data streams with existing clinical and mo-
lecular data. For AI developers, creating models that 
can effectively learn from and reason over such di-
verse and causally complex data (e.g. by incorpo-
rating geospatial analysis or social determinants of 
health ontologies20,21) represents a significant re-
search frontier toward a truly holistic, 360° patient 
view. 

Real-time Risk Monitoring and “Digital 

Twins”: Methodological Advancements in 

Dynamic Prediction 

With increasing streaming data from wearables and 
continuous EHR updates, the concept of a dynamic, 
continuously learning risk score is becoming method-
ologically feasible. The cardiovascular “digital twin”—
a virtual, dynamic model of an individual patient—
could simulate intervention effects for personalized 
planning.5,30,52 From an informatics perspective, real-
izing this vision necessitates significant methodolog-
ical breakthroughs in: (1) robust real-time streaming 
data analytics for noisy, high-velocity wearable-
device data; (2) continual learning algorithms that 
allow models to adapt to evolving patient states 
without catastrophic forgetting; and (3) hybrid mod-
eling approaches that can effectively integrate mech-
anistic physiological models with data-driven AI to 
ensure both predictive accuracy and clinical plausi-
bility. This presents a rich area for AI research. 

Advanced ML Techniques: The Next Wave 

of Methodological Innovation 

Methodologically, the field will see increased adop-
tion and refinement of advanced ML techniques, 
demanding innovation from AI researchers. Trans-
fer learning needs to evolve beyond simple fine-
tuning to enable more effective knowledge adapta-
tion across diverse cardiovascular datasets and tasks, 
especially in low-data regimes. Multitask learning 
frameworks could be designed to simultaneously 
predict a spectrum of related cardiovascular out-
comes, potentially uncovering shared underlying 
pathways and improving model efficiency. Continual 
learning must address the stability–plasticity dilem-
ma more effectively for dynamic risk models. Ad-
vanced generative models (e.g. diffusion models, 
advanced generative adversarial networks) offer 
promise for sophisticated data augmentation and 
realistic imputation of missing modalities but require 
methodological safeguards against generating mis-
leading or biased synthetic data. A critical unmet 
need is the deeper integration of causal inference 
techniques with AI/ML; current models excel at 
correlation, but moving toward identifying modi-
fiable, causal risk factors requires novel methods 
that combine observational data with causal dis-
covery algorithms or allow for “what-if” scenario 
modeling beyond simple prediction. Furthermore, 
federated learning architectures need to become 
more robust, secure, and communication-efficient to 
enable collaborative model training on large, distrib-
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uted datasets while rigorously preserving privacy 
and handling statistical heterogeneity across sites. 

Personalized Prevention through Precise 

Risk Stratification 

As multimodal prediction methodologies more accu-
rately identify high-risk individuals, they enable more 
aggressive or precisely tailored preventive strategies. 
Methodologically, the challenge shifts from mere 
prediction to prescription: developing AI systems 
that can not only forecast risk but also recommend 
optimal, individualized intervention strategies based 
on a patient’s unique multimodal profile and pre-
dicted response. This involves creating models that 
can learn from interventional data or employ rein-
forcement learning techniques to suggest therapies 
most likely to yield benefit for specific patient sub-
phenotypes, thus truly operationalizing precision 
prevention. 

Clinical Implementation and Workflow 

Integration 

For multimodal models to transition from research 
concepts to clinical tools, their integration into es-
tablished clinical workflows is paramount. This rep-
resents a significant informatics, human–computer 
interaction, and trust-building challenge that ex-
tends beyond mere technical embedding into the 
EHR. A potential workflow is conceptualized in 
Figure 3, which outlines how diverse data streams 
can be synthesized into actionable risk strata to 
guide clinical decision-making. 

Methodologically, the challenge shifts from mere 
prediction to prescription. The true clinical utility of 
these models lies in their ability to inform personal-
ized preventive strategies. For instance, as outlined 
in Figure 3, a coronary artery calcium (CAC) score of 
zero in a low- or intermediate-risk individual could 
support a shared decision-making conversation to 
defer or delay statin therapy.28 Conversely, a very 
high PRS, representing a significant lifelong genetic 
burden, could justify earlier and more aggressive 
primary prevention, such as initiating lipid-lowering 
therapy at a younger age or prompting referral for 
screening CCTA, even before traditional risk factors 
manifest.41,44 

Longitudinal EHR-based ML models, such as 
those by Li et al.,12 offer a pathway to more dynamic 
risk assessment, potentially flagging patients whose 
risk trajectory is accelerating based on repeated mea-

surements. Furthermore, alerts from wearable de-
vices, while not yet ready for autonomous therapeu-
tic action, could trigger timely clinical review for 
patients exhibiting concerning physiological trends. 

However, significant implementation barriers 

remain, including workflow disruption, physician 

alert fatigue, and the practicalities of cost and acces-

sibility. Advanced modalities like CCTA, CMR, and 
genomic testing are not universally available, par-

ticularly in lower-resource settings. This creates a 

risk that the benefits of multimodal AI may be lim-

ited to well-resourced academic centers, potentially 

exacerbating the health disparities discussed previ-

ously. Therefore, future research must focus not 
only on model accuracy but also on developing in-

tuitive clinical decision support interfaces, robust 

explainability methods (explainable AI) tailored to 

clinician needs, and cost-effectiveness analyses to 

ensure these powerful tools can be equitably and 

effectively deployed at scale. 

Continuous Evaluation and Model 

Governance: Ensuring Trustworthy and 

Adaptive AI 

Deployed multimodal AI models require robust sys-

tems for ongoing evaluation, governance, and adap-

tation. This includes periodic audits for performance 

drift, fairness, and potential biases across diverse 

populations. Methodological frameworks are needed 
for: (1) dynamic model updating or retraining as 

clinical practices, population characteristics, or even 

data sources evolve, without requiring complete re-

development; (2) rigorous post-deployment surveil-

lance to detect unexpected model behavior or errors; 

and (3) establishing clear “human-in-the-loop” pro-
tocols that define clinician oversight, responsibility, 

and model overriding capabilities. This “ModelOps” 

aspect of AI in healthcare is a critical informatics 

research area. 

To summarize, the future of CAD risk prediction 

is trending toward holistic, individualized risk pro-
filing, driven by informatics innovation. Multimodal 

data fusion is at the heart of this transformation. 

Achieving the aspiration of precise, preventative, and 

personalized CAD care within the next 5–10 years will 

require intensive, collaborative research between 

data scientists, AI methodologists, clinicians, and 
health systems, focusing on overcoming the outlined 

methodological and informatics challenges. 
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CONCLUSION  

Multimodal data fusion represents a significant 
methodological paradigm shift in CAD risk predic-
tion, propelling the field from coarse, population-
level estimates toward precise, individualized fore-
casts of patient risk, driven fundamentally by innova-
tions in AI and biomedical informatics. This review 
has critically synthesized the informatics approaches 
and evaluated the evolving methodological landscape 
that underpins this transition over the past 15 years. 
By systematically deconstructing how diverse data 
modalities—imaging, genomics, EHR, and wear-
ables—are being integrated through increasingly 
sophisticated AI and ML techniques, we have high-
lighted the complementary strengths harnessed and 
the demonstrable, albeit sometimes modest, im-

provements in predictive performance achieved over 
single-modality models. 

More importantly from an informatics perspec-
tive, this review underscores that the true value of 
multimodal fusion lies not just in incremental AUC 
gains, but in its methodological capacity to model the 
multifactorial nature of CAD, capture complex non-
linear interactions, and integrate longitudinal data 
dynamics—capabilities often beyond traditional risk 
assessment tools. We have identified key methodo-
logical patterns, from the utility of specific AI archi-
tectures like deep and graph neural networks for au-
tomated feature learning and cross-modal interac-
tion modeling, to the distinct roles of various data 
types, such as PRS providing baseline genetic predis-
position and EHRs offering rich temporal context. 

 

Figure 3. Clinical Workflow for Multimodal CAD Risk Stratification. 

Data from four key domains (Baseline EHR/Clinical, Imaging, Genomics, and Signals/Wearables) are integrated 

into a validated multimodal fusion model. The model outputs actionable risk strata, guiding personalized 

clinical decisions as outlined in the practical notes. 

Practical Notes: 

 CAC=0 may support deferring statins in low/intermediate risk 

 Very high PRS may prompt earlier imaging/intensification 

 Wearable-device alerts trigger clinical review but not autonomous therapy 

 Ensure fairness and consider federated learning for privacy 

ABPM, ambulatory blood pressure monitoring; BP, blood pressure; CAC, coronary artery calcium; CCTA, coronary 

computed tomography angiography; CMR, cardiac magnetic resonance; CT-FFR, computed tomography-derived 

fractional flow reserve; DM, diabetes mellitus; ECG, electrocardiogram; EHR, electronic health record; PCAT, 

pericoronary adipose tissue; PCG, phonocardiogram; PET, positron emission tomography; PRS, polygenic risk 

score; SPECT, single-photon emission computed tomography. 
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However, the realization of this paradigm’s full 
potential is contingent upon the biomedical infor-
matics community addressing substantial and ongo-
ing methodological challenges. These include devel-
oping robust solutions for data heterogeneity, miss-
ingness, and algorithmic bias; enhancing model 
interpretability to foster clinical trust and utility; 
and establishing rigorous frameworks for prospective 
validation and seamless clinical workflow integra-
tion. These hurdles represent critical areas for future 
AI research and methodological innovation. 

In summary, multimodal data fusion for CAD risk 
prediction serves as a compelling exemplar of AI’s 
transformative power in medicine and is a vibrant, 
rapidly advancing subfield of biomedical informatics. 
It directly aligns with the goals of precision medi-
cine: delivering the right intervention to the right 
patient at the right time. By continuing to refine 
informatics methodologies for robustly maximally 
utilizing the totality of patient data, the AI in medi-
cine community can significantly enhance risk pre-
diction, personalize preventive strategies, and ulti-
mately reduce the global burden of CAD. While the 
journey from complex data to actionable clinical 
wisdom is ongoing and demanding, the trajectory 
toward more informed, precise, and AI-driven 
individualized care for patients at risk of CAD is 
firmly established. 
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