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ABSTRACT

Traditional coronary artery disease (CAD) risk scores offer limited precision, often failing to capture the
complex, multifactorial nature of the disease. The proliferation of multimodal data from imaging, genomics,
electronic health records (EHRs), and wearables offers a transformative opportunity for more individual-
ized risk prediction. This narrative review systematically maps and critically evaluates the landscape of
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Multimodal Data Fusion for Precision of CAD

multimodal data fusion for CAD risk prediction. Following Preferred Reporting Items for Systematic reviews
and Meta-Analyses guidelines, we synthesized 39 empirical studies published from 2009 to 2025 to identify
key methodological patterns, informatics challenges, and future directions. Our synthesis reveals consistent
methodological patterns: (1) integrating imaging biomarkers (e.g. coronary computed tomography angiog-
raphy, coronary artery calcium scoring) with clinical data robustly enhances risk discrimination and reclas-
sification; (2) adding polygenic risk scores provides incremental value, typically via late-fusion models; and
(3) leveraging longitudinal EHR data with machine learning captures dynamic risk trajectories, outperform-
ing static scores. Advanced machine learning architectures, particularly deep and graph neural networks,
are pivotal for enabling automated feature extraction and modeling complex cross-modal interactions.
Despite these advances, significant informatics hurdles persist, including data heterogeneity, algorithmic
bias, the need for robust external validation, and challenges in clinical workflow integration. Multimodal
data fusion is a cornerstone of precision cardiology, but realizing its clinical potential requires a concerted
focus on developing fair, interpretable, and scalable methodological frameworks to translate complex data

into improved patient outcomes.

KEY WORDS: Artificial intelligence, coronary artery disease, multimodal data fusion, precision

medicine, risk prediction

INTRODUCTION

Coronary artery disease (CAD) remains a leading
cause of morbidity and mortality worldwide. Accu-
rate risk prediction of CAD events (such as myocar-
dial infarction, stroke, or cardiac death) is essential
for guiding preventive therapies. Traditional risk
scores (e.g. Framingham Risk Score, Pooled Cohort
Equations) rely on a limited set of clinical variables
(age, blood pressure, cholesterol, etc.) and provide
population-level estimates. However, these models
often underperform at the individual level, partly
because they ignore the vast wealth of patient-specific
data now available.! This data deluge, encompassing
structured and unstructured information from di-
verse sources such as electronic health records
(EHRs), laboratory tests, advanced imaging, genetic
profiling, and wearable sensors, presents a formida-
ble informatics challenge: how to optimally integrate
these heterogeneous data streams to extract mean-
ingful, predictive patterns that elude simpler mod-
els.t The human mind cannot easily assimilate and
weigh all these disparate data streams in a non-linear,
dynamic fashion. This gap between data generation
and clinical utilization has spurred interest in multi-
modal data fusion approaches, often leveraging arti-
ficial intelligence (AI) and machine learning (ML),
to improve precision risk prediction in CAD.1

Precision medicine aims to tailor healthcare
decisions to the individual by incorporating their
unique profile (phenotype, genotype, environment,
behavior).2:3 In the context of CAD, this means mov-
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ing beyond one-size-fits-all risk algorithms to models
that integrate multiple sources of information for
each patient. By fusing data such as imaging bio-
markers of atherosclerosis, genomic risk scores,
longitudinal EHR data, and even real-time signals
from wearable sensors, researchers hope to achieve
more personalized and accurate risk stratification.»4
Early studies suggest that such multimodal integra-
tion can indeed improve predictive performance,
albeit modestly, over single-modality models.5
Moreover, multimodal approaches can methodolog-
ically capture complex interactions and temporal
dynamics (e.g. changes in risk factors or imaging
findings over time) that static models cannot.!

This narrative review provides a critical synthesis
of advances in multimodal biomedical data fusion
for CAD risk prediction over the past ~15 years. We
aim to deconstruct common informatics approaches,
evaluate the efficacy of different fusion techniques,
and offer generalizable insights for the biomedical
informatics community working on complex disease
risk prediction. We summarize the key data modali-
ties being integrated—including imaging (computed
tomography [CT], magnetic resonance imaging
[MRI], etc.), genomics, EHR data, and wearable
device outputs—and the AI/ML methods enabling
their fusion. We highlight major findings from high-
quality studies and landmark trials, discuss meth-
odological challenges and current limitations, and
outline future directions for this rapidly evolving
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field. Crucially, we seek to identify common meth-
odological themes, persistent informatics challenges,
and promising strategies that can inform the design
and implementation of next-generation multimodal
predictive systems in cardiovascular medicine and
beyond.

By synthesizing evidence from diverse sources,
we aim to provide a state-of-the-art picture of how
multimodal data integration is shaping precision
cardiovascular risk prediction in the era of big data
and AI. While several existing reviews address Al in
cardiology or specific data modalities for cardiovas-
cular disease, this narrative review offers a distinct
contribution by providing a comprehensive synthesis
and critical evaluation specifically focused on the
methodological underpinnings and informatics chal-
lenges of data fusion strategies themselves, across a
broad spectrum of modalities (imaging, genomics,
EHRs, wearables) for CAD risk prediction over the
past 15 years. We uniquely deconstruct common in-
formatics approaches, analyze emergent methodolo-
gical patterns in fusion techniques (including AI/ML
algorithm choices, feature extraction, and model
validation), and offer generalizable insights into the
development and application of these complex pre-
dictive systems. This work seeks to fill a gap by not
only summarizing advances but also by critically
assessing the methodological evolution and future
informatics imperatives necessary to translate these
powerful tools into robust clinical applications.

METHODS

Objective and Scope

We conducted a narrative review of empirical multi-
modal fusion strategies for CAD/atherosclerotic car-
diovascular disease risk prediction and diagnosis,
prioritizing studies that integrated >2 distinct data
modalities (e.g. imaging+clinical/EHR, polygenic
risk score (PRS)+clinical, signals+clinical) and re-
ported predictive performance.

Information Sources

We searched PubMed/MEDLINE and PubMed
Central (clinical and imaging sciences), IEEE Xplore
(engineering and machine learning), Cochrane
CENTRAL (trial registry), and Crossref (online-
ahead-of-print/DOI completion) in the time window
of January 1, 2009 to June 1, 2025; earlier landmark
studies were retained when essential.
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Search Strategy

Search strings combined Medical Subject Headings
and free-text terms around multimodal fusion,
CAD/atherosclerotic cardiovascular disease, AI/ML,
and modality terms (coronary computed tomogra-
phy angiography [CCTA], coronary artery calcium
[CAC], computed tomography-derived fractional
flow reserve [CT-FFR], cardiac magnetic resonance
[CMR], single-photon emission computed tomogra-
phy [SPECT]/positron emission tomography, elec-
trocardiogram [ECG], genomics/PRS, EHR, wear-
ables). The following filters were used: humans;
English; 2009—2025.

Eligibility Criteria

Inclusion criteria for our literature search were: (1)
empirical human studies integrating >2 modalities;
(2) CAD/atherosclerotic cardiovascular disease
diagnosis or incident outcomes; (3) reported model
performance (area under the curve [AUC]/con-
cordance index [C-index] with or without 95% confi-
dence interval [CI]), calibration, and—if available—
reclassification (net reclassification improvement/
integrated discrimination improvement [IDI]); and
(4) internal and/or external validation.

Exclusion criteria were: single-modality studies;
non-human; editorials/reviews/guidelines/ methods-
only; studies lacking predictive/diagnostic perform-
ance; non-CAD outcomes.

Study Selection

Two reviewers independently screened titles/
abstracts, followed by full-text assessment; disagree-
ments were resolved by consensus. A Preferred
Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) flow diagram (Figure 1) summar-
izes identification, screening, eligibility, and inclu-
sion.

Data Extraction

We captured country/setting; N (events); modali-
ties; endpoint and horizon; fusion strategy (early/
intermediate/late); algorithm(s); validation; dis-
crimination (AUC/C-index, 95% CI); calibration;
reclassification (NRI/IDI); and overall risk of bias
using Prediction model Risk Of Bias Assessment
Tool (PROBAST).
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[ Identification of studies via databases. |

Records identified
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Duplicate records removed
before screening: n = 512
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* Review/editorial/methods-
only: 36
* No predictive performance: 8

Figure 1. PRISMA Flow Diagram for the Literature Search (2009-2025).
ASCVD, atherosclerotic cardiovascular disease; CAD, coronary artery disease.

Risk of Bias PROBAST

Determination of risk of bias was applied across do-
mains (participants, predictors, outcome, analysis).
Ratings were mapped to low/moderate/high. Over-
all, most included studies were rated at a “Medium”
risk of bias, primarily driven by a lack of rigorous
external validation on independent, diverse cohorts.
A detailed breakdown of the PROBAST assessment
for each study is provided in Supplementary Table 1.

RESULTS AND DISCUSSION

After applying the inclusion and exclusion criteria
(Figure 1), a total of 39 studies were selected for this
review. Findings are presented as a representative
table of 12 studies in Table 1, and a complete harmo-
nized supplement (Table S1) covering all 39 in-
cluded studies. Key performance gains, such as me-
dian change in the area under the curve, were de-
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rived by synthesizing data from the subset of studies
in Supplementary Table 1 that directly reported per-
formance metrics for both a single-modality base-
line model and the fused multimodal model.

Rationale for Multimodal Data Integration
in CAD Risk Assessment

Current risk stratification largely focuses on a nar-
row set of variables, failing to exploit the “wealth of
insights lying at various intersections of patient
data.” For instance, a standard risk calculator might
consider a patient’s age, sex, smoking status, blood
pressure, and cholesterol—but not their coronary
calcium score, genetic predisposition, or daily exer-
cise patterns. In reality, CAD risk is influenced by a
confluence of factors spanning biological, clinical,
and lifestyle domains. Multimodal data fusion refers
to the integration of multiple heterogeneous data
types into a unified predictive model.2 From a meth-
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Table 1. Representative multimodal CAD studies included in the main text (n=15).

First .
Author  Modalities SF”S‘°" Algorithm(s)  Validation = AUC/C-index  Key Contribution
" trategy
(Year)s
Motwani  CCTA + Late XGBoost External AUC =0.79 Benchmark ML
et al. clinical model for 5-year
(2017)¢ CAD risk
Betancur SPECT MPI + Late Deep CNN External AUC = 0.81 Al-enhanced
et al. clinical perfusion imaging
(2018)7 fusion
Sunetal. PRS+ Late Cox regression Internal C-index = 0.722 PRS-enhanced
(20218 clinical model with public
health simulation
Linetal. CCTA+PET Early Deep learning Internal AUC =0.84 Dual-modality
(2022)° perfusion imaging fusion for
ischemia prediction
King et al. PRS + Late Cox regression Internal HR stratification = Genetic + clinical
(2022)"%  clinical fusion with risk
stratification
Vassy et  PRS + Late Cox regression Internal NRI = 0.38% (men) Multi-ancestry PRS
al. clinical fusion with modest
(2023)" gain
Li et al. EHR time Early Transformer Real-world AUC =0.87 Temporal modeling
(2024)'?  series of structured
clinical data
Zhan et PCAT + FAI  Late ML + logistic Internal AUC =0.83 / 0.71 Segmental PCAT
al. + clinical regression fusion with
(2024)"3 inflammation
profiling
Pezelet CCTA +CMR Early LASSO + XGBoost External AUC = 0.86 Rich multimodal
al. + clinical + fusion with strong
(2025)"*  ECG external validation
Zhang et Face + Early Transformer + External Accuracy = 85% Non-traditional
al. tongue + adaptive weighting multimodal fusion
(2025)">  waveform + with novel
lab architecture
Gabriel et CAC + ECG + Late XGBoost + SHAP External AUC = 0.883 Multi-source
al. lab + structured data
(2025)'®  clinical fusion for 10-year
MACE
Zou et al. PCAT Early LASSO + LDA Internal AUC = 0.886 Lesion-specific
(2025)"7  radiomics + imaging fusion with
CT-FFR + clinical
clinical enhancement

Al, artificial intelligence; AUC, area under the curve; CAC, coronary artery calcium; CAD, coronary artery disease;
CCTA, coronary computed tomography angiography; C-index, concordance index; CMR, cardiac magnetic resonance;
CNN, convolutional neural network; CT-FFR, computed tomography-derived fractional flow reserve; ECG,
electrocardiogram; EHR, electronic health record; FAl, fat attenuation index; HR, hazard ratio; LASSO, Least
Absolute Shrinkage and Selection Operator; LDA, linear discriminant analysis; MACE, major adverse cardiovascular
events; ML, machine learning; MPI, myocardial perfusion imaging; NRI, net reclassification improvement; PCAT,
pericoronary adipose tissue; PET, positron emission tomography; PRS, polygenic risk score; SHAP, SHapley Additive
exPlanations; SPECT, single-photon emission computed tomography; XGBoost, eXtreme Gradient Boosting.
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odological standpoint, the premise is that each data
modality provides complementary information, cap-
turing potentially orthogonal aspects of the disease
process, and their combination can lead to richer

can translate into significantly better risk stratifica-
tion at the population level by reclassifying many
patients into correct risk categories.12

There are several compelling reasons, rooted in

feature representations and more robust model
performance than any single modality alone. The
informatics task is therefore to develop fusion tech-
niques that can effectively leverage this complemen- o
tarity. This entire process, from heterogeneous data
collection through the methodological core to an ac-
tionable clinical prediction, is conceptually illus-
trated in Figure 2. Indeed, a 2022 scoping review
found that in studies comparing multimodal models
to single-modality models, the multimodal approach
achieved on average a 6.4% improvement in predic-
tive accuracy.2 While seemingly modest, this high-
lights a consistent methodological observation: the
synergistic potential of integrated data. Such gains,
often achieved through sophisticated ML approaches,

informatics principles, to pursue multimodal risk
models:

Complementary data sources: Different mo-
dalities capture different aspects of CAD risk,
presenting both an opportunity and a meth-
odological challenge for integration. Imaging
can quantify atherosclerotic burden (e.g.
plaque volume or calcium) and ventricular
function; genomics captures inherent genetic
susceptibility; EHRs provide a longitudinal
record of risk factors, comorbidities, and
treatments; and wearables record real-time
physiology and lifestyle indicators. Individu-
ally, each is an imperfect predictor, but to-

Heterogeneous Methodological Core Enhanced_ C_AD Risk
Patient Data Prediction
Sources Al-Powered Multimodal | 4 Discrimination and
Fusion Engine mprove |sc_r|_m|n.a Ion an
Reclassification
¥ Automated Feature
P Extraction /\/
(Deep Learning) 5o
l Model Interpretability
Advanced ML & (XAl) g
Imaging Genomic Architectures )
Biomarkers Molecular (CNNs, RNNs, GNNs) A\ « Improved discrimination and reclassification
CCTA Data ﬁ / « Early/intermediate/late fusion strategies
CAC PRS Fusion Strategies + Handles missingness and heterogeneity
T Individualized Risk
3 7“ Handling Assessment
[ Wearable Sensor Missing Data and P
J‘A ) Data Real-time Heterogeneity <
{ ) Physiology @ ==
- = N\
Longitudinal Wearable
EHR Data Sensor Data Towards Capturing
Temporal Real-time Precision Nonlinear
Trends Physiology \ / Prevention Interactions

Figure 2. Conceptual Framework for Multimodal Data Fusion in Precision CAD Risk Prediction.

Pivotal Methodological Shift in Biomedical Informatics for Cardiovascular Health. Ongoing Informatics Challenges and
Future Research Directions Emphasized.

Heterogeneous patient data sources—including imaging biomarkers (e.g. CAC, CCTA), genomic/PRS information,
longitudinal EHR trajectories, and wearable-device/sensor signals—feed into an Al-enabled fusion engine that
combines automated feature extraction with model architectures (e.g. CNNs, RNNs, GNNs) and explicit fusion
strategies (early/intermediate/late), while addressing missingness, heterogeneity, and interpretability (XAl). The
resulting models aim to improve discrimination and reclassification and to enable individualized, actionable risk
assessment. Study-level performance metrics (AUC/C-index, calibration, and reclassification indices) are
summarized in Table 1 and Supplementary Table S1.

CAC, coronary artery calcium; CCTA, coronary CT angiography; CNNs, convolutional neural networks; EHR,
electronic health record; GNNs, graph neural networks; PRS, polygenic risk score; RNNs, recurrent neural networks;
XAl, explainable Al.
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gether they provide a richer feature set for risk
assessment.’8-22 The methodological challenge
lies in creating a unified model that can mean-
ingfully combine these disparate data types,
which vary in structure, temporality, and scale.
For example, coronary calcium on a CT scan
directly measures atherosclerosis, while a PRS
reflects lifelong genetic risk; integrating the
two could identify an individual with high ge-
netic risk who has not yet developed calcified
plaque, or vice versa.

e Improved discrimination and reclassifica-
tion: Multimodal models have demonstrated
higher discrimination (C-statistic/AUC) and
better patient risk reclassification than tradi-
tional tools, representing a key methodolo-
gical advance. Early fusion modeling in cardi-
ology, which methodologically combined clin-
ical variables with imaging features, yielded
superior prognostic performance compared to
clinical scores alone.5-7 These improvements,
while sometimes moderate, can be clinically
meaningful—especially for borderline-risk
patients where decisions (to start a statin,
refer for further testing, etc.) are sensitive to
risk estimates.’’? From an informatics
perspective, the ability of fused models to
refine risk categories highlights their
potential to enhance clinical decision support.

e Capturing disease complexity and dynamics:
CAD is a complex, multifactorial disease with
non-linear interactions (e.g. diabetes exacer-
bating the effect of cholesterol, or genetics
modulating response to lifestyle). Multimodal
models, especially those based on Al, are
methodologically better equipped to capture
these interactions that traditional linear mod-
els often miss.3-23-26 They can also incorporate
temporal data—for example, trends in blood
pressure or cholesterol over time, or changes
in plaque volume on serial scans—to reflect
the evolving risk profile of a patient, a capa-
bility often lacking in static models.427 Li et
al. demonstrated this by using repeated longi-
tudinal EHR measurements (vitals, labs) in a
ML model that outperformed a single-time-
point risk score for predicting 5-year athero-
sclerotic cardiovascular disease.’? The ML
model had a C-statistic of ~0.79 and showed
improved calibration and decision curve utility
over the guideline-recommended China-PAR
risk equation. This study illustrates the meth-
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odological advantage conferred by leveraging
temporal EHR data, where the trajectory and
variability of risk factors can significantly
enhance prediction beyond single snapshot
assessments.!?

Therefore, combining modalities is a logical step
toward precision risk prediction—ensuring that each
patient’s risk assessment leverages all available data
about them, rather than only population-derived
proxies. Below, we discuss each major data modality
and the methodological implications of its integra-
tion into CAD risk models.

Key Data Modalities for CAD Risk
Prediction

Imaging Biomarkers (CT, MRI, and
Others)

Cardiovascular Imaging. Cardiovascular imaging
provides direct visualization of structural and func-
tional disease, making it a powerful tool for risk
stratification. Methodologically, imaging biomarkers
often represent quantitative or semi-quantitative
features that offer a direct measure of the under-
lying pathology. In CAD, two non-invasive imaging
approaches are prominent from an informatics
integration perspective: CAC scoring and CCTA.

Coronary artery calcium scoring by non-contrast
CT quantifies calcified plaque in the coronaries; de-
cades of evidence have established CAC as one of the
strongest predictors of future coronary events.28-30
An elevated CAC (Agatston) score reclassifies risk
beyond traditional factors and has been incorpo-
rated into prevention guidelines (e.g. as a tiebreaker
for statin decisions).3! From an informatics stand-
point, CAC scores are relatively standardized nu-
merical values that can be readily incorporated into
statistical or ML models. In asymptomatic individ-
uals, CAC can identify those at high risk even if
clinical risk is moderate, and, vice versa, CAC=0 can
downgrade risk (the so-called “power of zero”).5 By
methodologically integrating CAC with clinical data,
the Multi-Ethnic Study of Atherosclerosis (MESA)
risk score was developed, demonstrating improved
risk discrimination over clinical variables alone. As
one study summarized, “Agatston calcium and MESA
score are a powerful cardiovascular risk predictor”
for future events.32

Coronary computed tomography angiography
visualizes both calcified and non-calcified plaque and
any luminal stenoses. Traditionally used diagnos-
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tically, CCTA also possesses significant prognostic
value.5 Beyond stenosis, plaque characteristics seen
on CCTA (often termed “high-risk plaque” features,
such as positive remodeling, low attenuation core,
napkin-ring sign) confer incremental risk informa-
tion.33:34 For example, patients with high-risk plaque
features on CCTA have higher rates of future acute
coronary syndromes independent of stenosis severi-
ty.33 Coronary computed tomography angiography
can thus identify individuals with vulnerable plaque
who might benefit from aggressive therapy even if
no severe stenosis is present.5 A key informatics ad-
vancement is the use of Al-driven tools to auto-
matically quantify plaque burden and subtype on
CCTA, enabling the extraction of rich, quantitative
imaging biomarkers for large-scale use in fusion
models.35:36 For instance, an Al prototype can now
output stenosis measurements and a Coronary
Artery Disease Reporting and Data System classifi-
cation from CCTA images, and others can measure
plaque volumes and detect features like low-
attenuation plaque.5 Such quantitative imaging bio-
markers, when combined with clinical and lab data,
hold promise for refined, methodologically sound
risk models.

Echocardiography and cardiac MRI (CMR)
provide additional functional biomarkers relevant to
risk,5 particularly for heart failure and cardiomy-
opathies, which often coexist or contribute to CAD
outcomes. Left ventricular ejection fraction is a well-
known prognostic marker.37:38 Left ventricular ejec-
tion fraction and other measures (global longitudi-
nal strain from echo, or late gadolinium enhance-
ment from CMR indicating scar) can thus enhance
risk prediction beyond atherosclerotic burden
alone.35 For example, in patients with dilated cardio-
myopathy, methodologically combining multipara-
metric CMR (fibrosis, function) with clinical data im-
proved prediction of sudden cardiac death.39 Auto-
mated CMR analysis using Al, which can rapidly
derive ventricular volumes and function, is an im-
portant informatics development for supplying these
metrics into risk models.5 Nuclear imaging (SPECT/
positron emission tomography perfusion) also pro-
vides ischemia and viability information; one study
showed that fusing clinical variables with SPECT
data yielded an AUC of 0.81 for predicting major
adverse cardiovascular events, slightly better than
0.78 with imaging alone, illustrating the additive
value from a methodological fusion perspective.740

Integration of Imaging with Other Modalities:
Methodological Considerations. The additive value
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of imaging has been demonstrated in several fusion
studies, highlighting a core principle in biomedical
informatics: integrating direct phenotypic assess-
ments with other data types enhances predictive
power. As noted, Motwani et al. showed significant
gains by adding CCTA features to clinical risk fac-
tors.¢ Likewise, Betancur et al. improved major ad-
verse cardiovascular events prediction by integrat-
ing SPECT findings with patient data.” AAref et al.
combined clinical factors with the CAC score to
predict obstructive CAD on CCTA, achieving a
fusion model AUC of 0.88, outperforming the
clinical model (0.77) and slightly exceeding imaging
alone (0.87).4° These results underscore that while
imaging biomarkers are often strong predictors,
their optimal use, methodologically, is in concert
with other patient information. In general, imaging
adds a personalized “phenotypic” layer on top of
clinical risk profiles—essentially measuring the
disease process directly—and thus can substantially
refine risk estimates when integrated appropriately
within a robust informatics framework.

Genomic and Molecular Data (PRS and
Beyond)

Genetic predisposition plays a significant role in
CAD risk. Polygenic risk scores (PRS) aggregate the
effect of many common genetic variants into a single
score representing an individual’s inherited risk for
CAD.4 Methodologically, PRS provide a static, life-
long estimate of genetic susceptibility. Over the past
decade, researchers have developed and validated
PRS for CAD that can stratify individuals by their
genetic risk. For example, one analysis found that
about 8% of the population have a polygenic profile
conferring a >3-fold increased risk of CAD.42 Another
study reported that people in the top quintile of a
CAD PRS had ~90% higher relative risk of coronary
events.43 These findings underscore that genetics can
identify a subset of individuals with substantially el-
evated baseline risk from birth. Unlike most risk fac-
tors, the genome is fixed—making PRS a potentially
powerful tool for early risk prediction, even before
traditional risk factors manifest, a unique character-
istic from an informatics integration perspective.44

The clinical utility of PRS is an area of active
research and methodological refinement. A compre-
hensive review by Klarin and Natarajan concluded
that the PRS predict incident CAD and can modulate
the expected benefit from preventive therapies.4 For
instance, individuals with high PRS derived greater
absolute benefit from statin therapy, suggesting PRS

8 October 2025 ¢ Volume 16 ¢ Issue 4 ¢ 0023



Multimodal Data Fusion for Precision of CAD

might help personalize preventive interventions.
Polygenic risk scores are also being studied for guid-
ing decisions like earlier screening.4t However, PRS
are not deterministic; they interact with environ-
ment and behavior. Notably, even those with high
genetic risk can significantly cut their risk through
healthy lifestyle changes.43 This interaction high-
lights the methodological imperative to integrate
genetics with other data modalities.

Integrating Genomics with Other Data: Methodo-
logical Approaches. The most straightforward fusion
method involves adding PRS to established clinical
risk models. Several studies have shown that incur-
porating PRS into clinical risk equations improves
discrimination and net reclassification, demonstrat-
ing its incremental methodological value.4! For ex-
ample, Inouye et al. demonstrated that genome-
wide PRS added to traditional risk factors sig-
nificantly reclassified individuals’ 10-year CAD risk
categories.44 Another study found that combining a
PRS with a person’s CAC score provides complemen-
tary risk information: the PRS captures lifelong pre-
disposition, while CAC reflects accumulated disease.45
Methodologically, this combines a static genetic
marker with a dynamic phenotypic marker. In
middle-aged adults, a high PRS can identify those at
risk before they develop detectable coronary calcium,
whereas CAC scoring can capture risk not explained
by genetics.45 Indeed, recent work reported that
both PRS and CAC were independent predictors of
coronary events, and using them together yielded
better risk discrimination than either alone.4¢ This
type of multimodal genetic-imaging approach could
be particularly useful for risk stratification in
individuals with intermediate clinical risk.

Beyond polygenic scores, other “omics” data are
emerging, presenting new methodological opportu-
nities and challenges for informatics. Plasma prote-
omics and metabolomics can provide molecular
fingerprints of disease activity.47 These have been
used to generate proteomic risk scores, which, when
combined with genomics and clinical data, might
further refine risk stratification.48 However, such
multi-omic integration is methodologically less
mature compared to genomics and imaging.49 Gene—
environment interactions are also relevant: inte-
grating data on lifestyle with genetic risk can identify
individuals whose genetic risk is being modulated by
their behaviors.43 Overall, genomics adds a “baseline
risk” anchor—stratifying individuals by inherent risk
from an early age—which can be methodologically
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layered with dynamic clinical and imaging data that
accumulate over time.5° As informatics tools for
genomic data mature and costs fall, genomic data
will likely be increasingly integrated into routine
CAD risk assessments.

Electronic Health Records and Clinical
Data

The EHR contains a trove of longitudinal patient in-
formation, including demographics, medical history,
diagnoses, medications, vital signs, laboratory results,
and physician notes. Traditionally, risk models only
utilize a few selected variables from this rich source.
Multimodal EHR-based modeling, as an informatics
endeavor, aims to harness a much broader swath of
EHR data, often longitudinally, for risk prediction.!2
Recent advances in data mining and ML have made
it feasible to methodologically incorporate dozens or
even hundreds of EHR features simultaneously into
a predictive model.5! For example, algorithms can be
fed a patient’s entire history of lab values, vital signs
over time, and medication records.2

A prime example is the study by Li et al. involv-
ing over 200,000 Chinese adults.'2 They extracted
25 repeated clinical measurements per person over
time and used ML (eXtreme Gradient Boosting and
Least Absolute Shrinkage and Selection Operator
regression) to predict 5-year atherosclerotic cardio-
vascular disease events. The model achieved a C-
statistic of ~0.79 and showed significantly improved
calibration and decision curve analysis compared to
the guideline-based China-PAR risk score. Although
AUC gains were modest (~0.03—0.04), the improve-
ment in risk classification is impactful. This study
methodologically illustrates how mining temporal
EHR data (trajectories and variability of risk factors)
can enhance prediction beyond static models.

Another dimension of EHR data for informatics
exploration is unstructured text, such as clinical
notes and reports.! These often contain valuable
insights not captured in structured fields. Natural
language processing algorithms can convert free text
into features for risk models, representing a signifi-
cant methodological tool.52 For instance, a natural
language processing pipeline might identify men-
tions of “angina” as additional risk indicators. The
integration of such unstructured data with struc-
tured data is a frontier of multimodal fusion, with
early work suggesting modest improvements in risk
prediction and the potential to uncover novel risk
factors.18-2252
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Electronic health record data fusion is central to
the concept of a “learning health system,” where rou-
tine clinical data continuously feeds into risk models
that update and improve methodologically over
time.! A key informatics challenge, however, is stan-
dardizing and cleaning EHR data, as it can be frag-
mented and suffer from missingness. Methodologies
like data imputation and generative models (e.g.
generative adversarial networks to fill missing lab
values) have been explored to address this.53-55

Integration of EHR with Other Modalities. In most
multimodal models, clinical/EHR data serve as the
foundational layer. Methodologically, this integra-
tion occurs across several dimensions. First is the
use of baseline structured data (demographics, diag-
noses, baseline labs) which provide essential context;
for example, the presence of diabetes or hyperten-
sion profoundly influences the interpretation of a
given CAC score or gene variant.

Second, and more powerfully, is the methodo-
logical strength of using longitudinal EHR data.
Static, single-time-point models are being outper-
formed by ML models that integrate repeated mea-
surements over time. A prime example is the study
by Li et al. which integrated demographics, medica-
tions, and irregularly repeated laboratory and phy-
siological measurements from over 200,000 adults.?2
Their ML model demonstrated improved 5-year
atherosclerotic cardiovascular disease prediction
over the guideline-recommended Cox model (C-
statistic ~0.79), primarily by capturing the trajec-
tory and variability of risk factors.12

Third is the exploration of unstructured data
using natural language processing to extract features
from clinical notes (e.g. mentions of “angina”),
which may offer modest improvements.

Finally, EHR data are commonly used in late-
fusion strategies with other modalities. For example,
Zhao et al. demonstrated an EHR-genetic late fusion
model for predicting CAD events, which outper-
formed using EHR data alone, illustrating one meth-
odological approach to merge these data types.5¢

Wearable and Sensor Data

The proliferation of wearable devices has introduced
a new modality for risk assessment: continuous or
high-frequency monitoring of physiological and be-
havioral markers. From an informatics perspective,
data from wearable devices represent high-velocity,
high-volume time-series data that can capture as-
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pects of health and lifestyle difficult to measure in
clinic visits—e.g. daily step count, heart rate vari-
ability, sleep patterns, and arrhythmias. These fac-
tors can modulate CAD risk and may serve as early
warning signals. For instance, wearables provide a
quantifiable window into parameters like physical
activity and sleep, which are linked to cardiovascular
risk.

Several studies and prototypes have explored
methodologically integrating wearable sensor data
into cardiovascular risk models. Ali et al. proposed a
comprehensive smart healthcare monitoring system
for CVD prediction that fuses electronic medical
record data with wearable sensor data.5? Their con-
ceptual framework outlines how vital signs and bio-
signals from wearables (ECG, blood pressure, etc.)
are continuously collected and combined with
medical records to generate dynamic risk alerts,
highlighting the informatics challenge of real-time
data integration and analysis. Zhang et al. developed
a tool to triage acute chest pain by early fusion of
multimodal signals—ECG, heart sounds, echocardi-
ography, Holter data, and biomarkers—demonstrat-
ing the feasibility of merging wearable-device data
with imaging and labs for acute risk stratification.s8
Similarly, Li et al. combined ECG and phonocardio-
gram features, showing that this dual-sensor ap-
proach methodologically improved prediction over
single-sensor models.59

In terms of outcomes, some studies have linked
wearable-derived metrics to hard events. Persistent
tachycardia or reduced heart rate variability can sig-
nal higher risk. Large-scale projects like the Apple
Heart Study hint at how wearables could identify at-
risk individuals. Future integration may include data
from continuous blood pressure and glucose moni-
tors. One study showed wearable sensor data could
predict certain lab test abnormalities, suggesting it
reflects underlying physiology relevant to cardiovas-
cular stress, an interesting avenue for informatics
exploration.¢e

Methodological Challenges and Opportunities with
Wearables. Data from wearable devices are inher-
ently noisy and highly individualized, posing signi-
ficant informatics challenges in ensuring data qual-
ity, handling missing periods, and minimizing false
alarms. However, Al models, especially deep learn-
ing, are methodologically well-suited for finding
signals in noisy time-series data. Recurrent neural
networks or transformers can ingest long sequences
of sensor readings to detect subtle patterns indica-
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tive of risk. Integrating wearable-device data with
EHR data is a new methodological frontier; an Al
model could potentially flag patients for higher near-
term risk based on anomalous trends in wearable-
device data. In summary, wearable devices provide a
continuous, lifestyle-integrated data modality that
complements traditional data sources. When fused,
wearables could help capture the impact of daily
behaviors and early physiological changes on CAD
risk, making risk prediction more dynamic and per-
sonalized—potentially evolving into a living risk
score. While direct outcome prediction evidence is
still emerging, the incorporation of wearables into
risk models is a promising area for future infor-
matics research.

AT and ML Techniques for Multimodal
Fusion

Integrating diverse data types into a cohesive predic-
tive model is a complex informatics task. Machine
learning and AI methods are the linchpin enabling
effective multimodal data fusion for CAD risk pre-
diction. Unlike traditional regression techniques,
which often struggle with high-dimensional, hetero-
geneous inputs, modern ML, especially deep learning,
can handle large multimodal feature spaces and un-
cover complex non-linear relationships.¢! These ca-
pabilities are crucial for advancing beyond simplistic
models to those that truly reflect the multifaceted
nature of CAD. Here, we outline key methodological
approaches and advancements in this domain.

Early versus Late versus Intermediate
Fusion: Methodological Considerations

In ML parlance, early fusion involves concatenating
all input data (after appropriate preprocessing) and
feeding it into a single model. Late fusion entails
building separate models for each modality and then
combining their predictions.5 Intermediate (mid-
level) fusion involves merging data at an interme-
diate layer, for example, by combining learned fea-
tures from separate sub-networks dedicated to each
modality.62 Each strategy presents distinct methodo-
logical advantages and disadvantages. Early fusion,
by concatenating inputs, methodologically allows for
the model to learn cross-modal interactions from
the raw (or minimally processed) data but can lead
to very high-dimensional feature spaces. This poses
optimization challenges and increases the risk of
overfitting if not managed with appropriate regular-
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ization techniques or sufficiently large datasets.
Conversely, late fusion is architecturally simpler and
preserves modality-specific performance as each
sub-model optimizes on its data; however, it meth-
odologically risks missing synergistic feature inter-
actions that might only be apparent when features
are combined at earlier stages. Intermediate fusion
offers a methodological compromise, aiming to learn
modality-specific representations in initial layers
before merging them in deeper layers, thus enabling
both specialized feature extraction and joint inter-
action modeling.2 The choice of fusion strategy is
therefore a critical methodological decision, contin-
gent on dataset characteristics, the nature of inter-
modal relationships, computational resources, and
the specific research question. In practice, many CAD
fusion studies have utilized late fusion, often com-
bining outputs or risk scores via a meta-classifier.5
However, there is an evident trend toward more
integrated approaches like intermediate fusion, par-
ticularly with the rise of deep learning architectures.

Deep Learning Architectures: A
Methodological Paradigm for Fusion

Deep learning has revolutionized data analysis in
many fields, and its application to multimodal fusion
in healthcare is a significant methodological advance-
ment. Convolutional neural networks (CNNs) excel
at imaging analysis, while recurrent neural networks
or transformers are well-suited for sequential data
like time-stamped EHR entries or wearable-device
time series. For multimodal fusion, researchers often
construct multi-branch neural networks. This archi-
tecture represents a powerful methodological para-
digm, allowing for tailored processing of each data
type (e.g. a CNN branch for CT/MRI data, a multi-
layer perceptron or transformer branch for tabular
EHR data, and another for genomic data). These
branches then merge (concatenate their learned fea-
ture representations) at some point to produce a uni-
fied prediction, inherently supporting intermediate
fusion.5 Such architectures have shown success; one
model combining clinical variables and CCTA images
through deep learning improved risk prediction of
mortality over models using either clinical or imag-
ing data alone. Another deep learning model fused
fundus photography with patient demographics to
predict CAD, employing a graph convolutional neu-
ral network to handle the multimodal data struc-
ture, showcasing the flexibility of these advanced
methods.5
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Graph-Based Fusion: An Emerging
Methodological Frontier

An emerging technique is representing multimodal
data within a graph structure, where nodes can rep-
resent patients or data elements (e.g. specific bio-
markers, genetic variants, clinical events) and edges
represent relationships or similarities between them.
Graph convolutional neural networks, generally re-
ferred to as graph convolutional networks (GCN),
can then learn representations from this graph,
effectively fusing information in the process.35 This
approach offers a natural way to represent and learn
from complex relationships within and between dif-
ferent data modalities and patient entities. Huang et
al. used a GCN to combine vascular biomarkers from
retinal images with clinical characteristics to predict
CAD, treating different data sources as intercon-
nected nodes.52 Methodologically, graph-based ap-
proaches are especially useful when data elements
have inherent network structures (e.g. genes in path-
ways, patients in social networks) or when one wants
to integrate knowledge graphs with patient data. In
CAD, one could envision a graph where a patient
node connects to nodes representing their risk fac-
tors, imaging findings, genetic variants, etc., and a
graph neural network learns which connections are
most predictive of outcomes.35 This is still a cutting-
edge approach but holds promise for integrating
disparate data while preserving and leveraging com-
plex relationships, a distinct methodological advan-
tage over traditional feature vector-based methods.

Handling Missing Data and
Heterogeneity: A Core Informatics
Challenge

A ubiquitous methodological challenge in real-world
multimodal datasets is that not every patient will
have every data type (e.g. not all patients undergo
MRI or genetic testing). Machine learning models
must handle such missing modalities gracefully, and
robust informatics solutions are crucial. Solutions
include imputation techniques, which range from
simple statistical methods to sophisticated ML-
based approaches for filling in missing values. Gen-
erative models, such as generative adversarial net-
works and variational autoencoders, can be trained
to generate one modality from another—for example,
to predict what a patient’s imaging might look like
given their clinical profile. Methodologically, these
generative approaches can learn the underlying data
distributions and relationships between modalities
to create plausible synthetic data, thereby allowing a
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full feature vector for every patient, though their use
requires careful validation to avoid introducing
bias.39 While not yet common in CAD risk modeling,
these techniques could help utilize partial data more
effectively. Another approach is to design models
that can accept variable inputs, outputting a predic-
tion even if one modality is absent, perhaps with an
associated uncertainty penalty. This flexibility will
be crucial for real-world deployment, as complete
data availability is rare outside curated research
cohorts.

Automated Feature Extraction: A
Methodological Shift

A barrier in earlier fusion studies was the need for
manual feature extraction—e.g. ahuman or separate
software had to quantify plaque from images or cu-
rate EHR variables, a labor-intensive process.39 New
AT tools automate this, representing a significant
methodological advancement. Computer vision can
extract dozens of imaging features (volumes, tex-
tures, etc.) from CT/MRI, and natural language pro-
cessing can pull key concepts from text records.5
This automation greatly expands the feasible feature
set. As noted, CNNs can process raw images directly,
eliminating manual selection of imaging biomark-
ers. Similarly, raw lab time-series can be input into a
recurrent neural network without manual summari-
zation. This means multimodal models can consider
“thousands of different parameters” to potentially
identify novel predictive patterns.5 The downside is
an increased risk of overfitting or learning spurious
correlations when so many features are considered,
necessitating larger training datasets and rigorous
validation strategies.5

Explainability and Model Interpretation:
A Paramount Methodological Concern
Given the “black box” nature of many advanced ML
models, ensuring model interpretability is a para-
mount methodological concern, especially for clini-
cal acceptance and trust. Techniques like SHapley
Additive exPlanations or integrated gradients can
help interpret which features (or even modalities)
are driving a specific prediction for an individual
patient. For example, an explainable multimodal
model might indicate that a high CAC score com-
bined with a high LDL level was the top contributor
to a patient’s high-risk prediction, while for another,
it might be a high PRS coupled with blood pressure
variability. Such insights not only build trust that
the model aligns with medical reasoning or can be
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rationalized but can also reveal new risk factors or
interactions. From an informatics perspective, de-
veloping and validating robust explainability meth-
ods for complex multimodal models is essential for
facilitating clinical translation, ensuring responsible
Al deployment, and potentially uncovering new
scientific insights.

To recapitulate, AT and ML techniques form the
engine of multimodal data fusion, providing the
methodological toolkit to handle complex, high-
dimensional, and heterogeneous data that traditional
statistical models often cannot. The choice of fusion
strategy (e.g. early, late, intermediate) and model
architecture (e.g. multi-branch neural networks,
GCNs) is a critical methodological decision, often
tailored to the specific dataset characteristics, the
nature of the data modalities, and the prediction
task at hand. One survey indicated that early fusion
was a common strategy in health ML literature and
that multimodal models generally outperformed
single-modality models. However, these advanced
models also present challenges, such as the need for
large training datasets and ensuring generalizability
and interpretability, which are active areas of meth-
odological research.

SUMMARY OF KEY STUDIES AND
FINDINGS: EVIDENCING
METHODOLOGICAL PROGRESS

Multimodal risk prediction in CAD has transitioned
from concept to proof-of-concept over the last 10—15
years, with numerous studies providing crucial
evidence for the viability and benefits of various
fusion methodologies. Table 1 provides an overview
of 12 representative studies that have integrated
multiple data types for CAD risk prediction or re-
lated cardiovascular outcomes. These studies exem-
plify diverse informatics approaches to data fusion,
including combinations of clinical, imaging, genomic,
and wearable-device data. Each includes external
validation and reports discrimination metrics (AUC/
C-index), highlighting consistent—though varied—
improvements in predictive performance and, where
available, incremental gains over the best single
modality (AAUC). The complete standardized data-
set of all 39 empirical multimodal studies, including
detailed characteristics such as fusion strategies,
calibration, reclassification, and PROBAST risk-of-
bias assessment, is provided in Supplementary
Table 1. These studies, employing diverse data
combinations and analytical techniques, collectively
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reinforce several key methodological insights into
multimodal data fusion for CAD risk prediction.

First, the consistent finding that integrating
imaging with clinical data tends to yield higher
prognostic performance than using either alone (as
discussed previously regarding the fusion of imaging
and clinical data%7-4°) validates a core tenet of multi-
modal informatics: the synergy achieved by combin-
ing direct phenotypic assessments (imaging) with
broader clinical context. The improvements, ranging
from substantial to modest in terms of AUC, consis-
tently point toward a positive methodological direc-
tion, demonstrating the value of fusing these specific
data types.5

Second, these studies showcase the exploration
and proof-of-concept success of novel data combina-
tions and fusion methodologies. For example, the
work by Li et al. combining ECG and heart sound
signals illustrates how fusing data from different
physiological sensor types can capture complemen-
tary information (electrical versus mechanical cardi-
ac signals), leading to improved predictive models.59
Similarly, Huang et al. demonstrated a novel infor-
matics approach using a graph CNN to fuse retinal
image features with demographics for CAD diagno-
sis, underscoring that non-obvious data sources,
when methodologically integrated, can yield predic-
tive value.®2 The work by Zhao et al. provides evi-
dence for the utility of late fusion methodologies in
combining EHR data with genomics.56

Third, a crucial methodological point highlighted
by these studies is that even when gains in discrim-
ination metrics like AUC are small, improvements in
calibration and risk reclassification are often ob-
served.12:52,63 For instance, Li et al. found that their
EHR-based ML model offered better calibration and
clinical net benefit than traditional scores, despite a
relatively modest C-index increase.'2 This is vital for
clinical decision-making, as correct patient reclassi-
fication (e.g. from “low” to “intermediate” risk)
based on a methodologically sound model can di-
rectly influence preventive interventions.

Finally, it is important to note from a method-
ological standpoint that most multimodal models to
date have been developed and evaluated on retro-
spective data, often from well-curated clinical trial
cohorts or registries. While these studies are essen-
tial for establishing proof-of-principle and refining
fusion methodologies, the subsequent steps of pro-
spective validation and assessment of real-world
clinical impact (i.e. whether using these advanced
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models actually prevents more events) are critical
for translating these informatics innovations into
routine practice.

Nonetheless, the accumulating evidence from
studies such as these provides a strong rationale that
multimodal data fusion, as a methodological ap-
proach, improves risk prediction and can uncover
high-risk individuals more accurately than tradition-
al methods.25 As more high-quality studies drawing
on larger, more diverse datasets (e.g. UK Biobank)
emerge, we anticipate the development of even more
refined and robust multimodal fusion methodo-
logies and models.

Challenges and Limitations:
Methodological and Informatics Hurdles
Despite its significant promise, the advancement
and clinical translation of multimodal data fusion
for CAD prediction face numerous challenges. These
hurdles are not merely technical or practical; many
are inherently linked to the complexities of working
with human data and necessitate robust methodo-
logical and informatics solutions. Recognizing these
limitations is crucial for contextualizing current
results and guiding future improvements toward
clinically viable and equitable systems.

Data Silos and Integration Difficulties: A
Fundamental Informatics Barrier

Different data modalities often reside in separate,
disconnected systems—imaging in picture archiving
and communication systems, genomics in special-
ized lab reports, wearable-device data on consumer
devices, and EHR data fragmented across various
platforms. Merging these datasets requires substan-
tial effort in data linkage, standardization, and the
development of robust informatics pipelines and
interoperability standards.5 This lack of seamless in-
tegration has significantly slowed research progress
and remains a primary barrier to real-world imple-
mentation of multimodal models. Methodologically,
overcoming these silos is a prerequisite for assem-
bling the comprehensive, patient-centric datasets
needed for developing and validating fusion models.

Missing Data and Selection Bias:
Methodological Complications

In real-world clinical practice, not every patient
undergoes every test or procedure. Consequently,
multimodal datasets are often incomplete, posing a
significant methodological challenge. Patients who
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have undergone advanced imaging or genetic testing
may systematically differ from those who have not,
introducing selection bias that can limit the general-
izability of models trained on such data. Missing mo-
dalities for some patients can force their exclusion
from analyses or necessitate imputation. There re-
mains a risk that sophisticated multimodal models
may only be applicable to a select subset of patients
with complete data, potentially exacerbating health
disparities. Designing models that degrade grace-
fully with missing inputs is a complex but important
methodological goal.

Need for Large, Diverse Datasets:
Addressing Methodological Risks
Multimodal models, by their nature, tend to incorpo-
rate a large number of features, sometimes hundreds,
compared to traditional models. This high dimen-
sionality raises the methodological risk of overfitting,
where a model learns spurious patterns specific to
the training data that do not generalize to new, un-
seen patients. To counteract this, very large and di-
verse training datasets, encompassing thousands of
events, are necessary to ensure models are robust and
generalizable. Many published studies, however,
have relied on relatively modest sample sizes, which
limits their statistical power and the broader appli-
cability of their findings.5 While automated feature
extraction is improving and large biobanks are be-
coming more accessible, the need for careful
external validation on independent cohorts remains
a critical methodological step to ensure models are
not overly tuned to their development dataset.

Interpretability and Validation of Findings:
Core Informatics Imperatives

Multimodal ML models, especially those based on
deep learning, can often function as “black boxes,”
making it difficult to understand how they arrive at
specific predictions. This lack of transparency is a
major concern for clinical adoption, as clinicians may
be wary of relying on outputs from opaque models.
There is also the risk of spurious correlations, where
a model might identify patterns that are statistically
predictive in the training data but not causally relat-
ed to the outcome. It is a methodological imperative
to remember that correlation does not equal causa-
tion, and efforts should be made to understand why
a model makes certain predictions, ensuring they
align with clinical sense. Techniques in explainable
AT offer promise, but their integration and valida-
tion for complex multimodal models in clinical work-
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flows are ongoing informatics challenges. Further-
more, regulatory bodies will likely require clear evi-
dence of safety, efficacy, and fairness, which is
methodologically harder to demonstrate for complex
Al systems than for traditional risk scores. As of
2022, virtually no multimodal AI risk model for
CAD had achieved regulatory approval or wide-
spread deployment in routine care.2

Data Privacy and Implementation
Challenges

Combining sensitive data from multiple sources—
such as genetic information, detailed clinical histo-
ries, and continuous data from wearable devices—
amplifies concerns about patient privacy and data
security. Genetic data are inherently sensitive, while
data from wearable devices may be collected and
stored outside the traditional clinical domain under
different protection standards. Ensuring robust
patient-consent mechanisms and secure data-
handling protocols across all modalities is a critical
informatics and ethical requirement.

Methodological innovations like federated learn-
ing, where models are trained across institutions
without centralizing raw patient data, could help
alleviate some privacy concerns while enabling the
assembly of large datasets necessary for robust
model development.

Equity and Bias Considerations: A Pressing
Methodological and Ethical Concern

If not carefully addressed, multimodal models could
inadvertently perpetuate or even worsen existing
healthcare disparities. This risk operates at multiple
levels. First, access to the data modalities themselves
is inequitable. Advanced imaging (CCTA, CMR), ge-
nomic profiling, and wearable devices are less acces-
sible to underserved populations, including those in
lower socioeconomic strata or rural settings com-
pared to their urban, high-income counterparts.9
This creates a foundational data-availability bias.

Second, this disparity directly impacts model im-
plementation and adoption. A model predominantly
trained on data-rich patients from well-resourced
academic centers will inevitably perform poorly or
unfairly for patients with data sparsity, who are
often among the most vulnerable.2 This can create a
methodological vicious cycle: the models fail where
they are needed most, leading to a loss of trust and
lower adoption rates in disadvantaged communities,
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thereby amplifying the very health disparities they
were intended to mitigate.

Furthermore, underlying biases present in any
single data source—such as racial biases in EHR
documentation or the underrepresentation of non-
European ancestries in genomic reference panels—
can be inherited and potentially amplified by the
fused model. As one review highlighted, there is a
general lack of analysis on how multimodal ap-
proaches perform across diverse sub-populations.2
It is therefore a methodological and ethical impera-
tive to ensure these models are rigorously evaluated
in diverse cohorts and that steps are taken to miti-
gate bias. This may involve developing fairness-
aware algorithms or, as a crucial future direction,
incorporating social determinants of health and
environmental factors as explicit model inputs to
create more context-aware and equitable predictive
tools.20.21

Maintenance and Monitoring: Ensuring
Long-term Model Viability

A deployed multimodal risk model is not a static
entity; it will likely require regular recalibration and
updating as clinical practice patterns, population
characteristics, and treatment efficacies change over
time. For example, as preventive therapies improve,
baseline population risk may decrease, necessitating
model adjustments to avoid overpredicting risk.
Monitoring a model’s performance post-deployment
and having a clear methodological framework for
retraining or adjusting it are key components of safe
and effective use. This requires an ongoing data col-
lection, curation, and model governance infra-
structure.

Taken together, while multimodal fusion models
show great promise, they also embody the principle
that “with great power comes greater responsibili-
ty.”t The biomedical informatics field must navigate
these technical hurdles of data integration, ensure
robust methodological validation to move beyond
hype from underpowered studies, and address the
practical and ethical issues of implementation. Many
of these challenges mirror those seen in any Al
application in healthcare but are amplified by the
complexity of dealing with multiple, heterogeneous
data types. Recognizing these limitations provides a
clear roadmap for future research, improvement,
and the careful translation of these advanced models
from research settings to actual clinical benefit.
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FUTURE PERSPECTIVES AND
DIRECTIONS: ADVANCING THE
INFORMATICS FRONTIER

The coming years are likely to witness significant
advancements in multimodal data fusion for CAD
risk prediction, moving from retrospective validation
to impactful clinical tools. This progression will be
driven by methodological innovations and informat-
ics breakthroughs, demanding novel approaches from
Alresearchers and biomedical informaticians. Some
key future directions and opportunities include:

Prospective Clinical Trials and
Implementation Studies: Methodological
Imperatives for Real-world Validation

To truly assess the impact of multimodal risk
models, rigorous testing in prospective clinical set-
tings is essential. Methodologically, such trials must
extend beyond predictive accuracy metrics to evalu-
ate improvements in patient outcomes (e.g. fewer
heart attacks) and cost-effectiveness when these AI-
driven models guide interventions. For informati-
cians and trial designers, a key challenge lies in de-
veloping robust frameworks for seamlessly integrat-
ing these complex models into diverse clinical work-
flows and evaluating their real-world utility and
adoption barriers through rigorous implementation
science, an important allied field of informatics.

Broader Data Integration: Expanding the
Informatics Scope to “Total Lifestyle” and
Environment

Future models will likely seek to incorporate data
beyond the traditional medical sphere, presenting
new informatics challenges and opportunities in data
representation, linkage, and modeling. Asnoted in a
recent editorial, linking social determinants of health
and environmental factors (e.g. neighborhood depri-
vation, air pollution) can enrich risk predictions.:
Methodologically, this requires developing novel
informatics techniques to quantitatively capture,
harmonize, and integrate these highly heteroge-
neous, often unstructured or sparsely available, non-
medical data streams with existing clinical and mo-
lecular data. For Al developers, creating models that
can effectively learn from and reason over such di-
verse and causally complex data (e.g. by incorpo-
rating geospatial analysis or social determinants of
health ontologies202t) represents a significant re-
search frontier toward a truly holistic, 360° patient
view.
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Real-time Risk Monitoring and “Digital
Twins”: Methodological Advancements in
Dynamic Prediction

With increasing streaming data from wearables and
continuous EHR updates, the concept of a dynamic,
continuously learning risk score is becoming method-
ologically feasible. The cardiovascular “digital twin”—
a virtual, dynamic model of an individual patient—
could simulate intervention effects for personalized
planning.539:52 From an informatics perspective, real-
izing this vision necessitates significant methodolog-
ical breakthroughs in: (1) robust real-time streaming
data analytics for noisy, high-velocity wearable-
device data; (2) continual learning algorithms that
allow models to adapt to evolving patient states
without catastrophic forgetting; and (3) hybrid mod-
eling approaches that can effectively integrate mech-
anistic physiological models with data-driven Al to
ensure both predictive accuracy and clinical plausi-
bility. This presents a rich area for Al research.

Advanced ML Techniques: The Next Wave
of Methodological Innovation
Methodologically, the field will see increased adop-
tion and refinement of advanced ML techniques,
demanding innovation from Al researchers. Trans-
fer learning needs to evolve beyond simple fine-
tuning to enable more effective knowledge adapta-
tion across diverse cardiovascular datasets and tasks,
especially in low-data regimes. Multitask learning
frameworks could be designed to simultaneously
predict a spectrum of related cardiovascular out-
comes, potentially uncovering shared underlying
pathways and improving model efficiency. Continual
learning must address the stability—plasticity dilem-
ma more effectively for dynamic risk models. Ad-
vanced generative models (e.g. diffusion models,
advanced generative adversarial networks) offer
promise for sophisticated data augmentation and
realistic imputation of missing modalities but require
methodological safeguards against generating mis-
leading or biased synthetic data. A critical unmet
need is the deeper integration of causal inference
techniques with AI/ML; current models excel at
correlation, but moving toward identifying modi-
fiable, causal risk factors requires novel methods
that combine observational data with causal dis-
covery algorithms or allow for “what-if” scenario
modeling beyond simple prediction. Furthermore,
federated learning architectures need to become
more robust, secure, and communication-efficient to
enable collaborative model training on large, distrib-
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uted datasets while rigorously preserving privacy
and handling statistical heterogeneity across sites.

Personalized Prevention through Precise
Risk Stratification

As multimodal prediction methodologies more accu-
rately identify high-risk individuals, they enable more
aggressive or precisely tailored preventive strategies.
Methodologically, the challenge shifts from mere
prediction to prescription: developing Al systems
that can not only forecast risk but also recommend
optimal, individualized intervention strategies based
on a patient’s unique multimodal profile and pre-
dicted response. This involves creating models that
can learn from interventional data or employ rein-
forcement learning techniques to suggest therapies
most likely to yield benefit for specific patient sub-
phenotypes, thus truly operationalizing precision
prevention.

Clinical Implementation and Workflow
Integration

For multimodal models to transition from research
concepts to clinical tools, their integration into es-
tablished clinical workflows is paramount. This rep-
resents a significant informatics, human—computer
interaction, and trust-building challenge that ex-
tends beyond mere technical embedding into the
EHR. A potential workflow is conceptualized in
Figure 3, which outlines how diverse data streams
can be synthesized into actionable risk strata to
guide clinical decision-making.

Methodologically, the challenge shifts from mere
prediction to prescription. The true clinical utility of
these models lies in their ability to inform personal-
ized preventive strategies. For instance, as outlined
in Figure 3, a coronary artery calcium (CAC) score of
zero in a low- or intermediate-risk individual could
support a shared decision-making conversation to
defer or delay statin therapy.2® Conversely, a very
high PRS, representing a significant lifelong genetic
burden, could justify earlier and more aggressive
primary prevention, such as initiating lipid-lowering
therapy at a younger age or prompting referral for
screening CCTA, even before traditional risk factors
manifest.41.44

Longitudinal EHR-based ML models, such as
those by Li et al.,*2 offer a pathway to more dynamic
risk assessment, potentially flagging patients whose
risk trajectory is accelerating based on repeated mea-
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surements. Furthermore, alerts from wearable de-
vices, while not yet ready for autonomous therapeu-
tic action, could trigger timely clinical review for
patients exhibiting concerning physiological trends.

However, significant implementation barriers
remain, including workflow disruption, physician
alert fatigue, and the practicalities of cost and acces-
sibility. Advanced modalities like CCTA, CMR, and
genomic testing are not universally available, par-
ticularly in lower-resource settings. This creates a
risk that the benefits of multimodal AI may be lim-
ited to well-resourced academic centers, potentially
exacerbating the health disparities discussed previ-
ously. Therefore, future research must focus not
only on model accuracy but also on developing in-
tuitive clinical decision support interfaces, robust
explainability methods (explainable Al) tailored to
clinician needs, and cost-effectiveness analyses to
ensure these powerful tools can be equitably and
effectively deployed at scale.

Continuous Evaluation and Model
Governance: Ensuring Trustworthy and
Adaptive AI

Deployed multimodal ATl models require robust sys-
tems for ongoing evaluation, governance, and adap-
tation. This includes periodic audits for performance
drift, fairness, and potential biases across diverse
populations. Methodological frameworks are needed
for: (1) dynamic model updating or retraining as
clinical practices, population characteristics, or even
data sources evolve, without requiring complete re-
development; (2) rigorous post-deployment surveil-
lance to detect unexpected model behavior or errors;
and (3) establishing clear “human-in-the-loop” pro-
tocols that define clinician oversight, responsibility,
and model overriding capabilities. This “ModelOps”
aspect of Al in healthcare is a critical informatics
research area.

To summarize, the future of CAD risk prediction
is trending toward holistic, individualized risk pro-
filing, driven by informatics innovation. Multimodal
data fusion is at the heart of this transformation.
Achieving the aspiration of precise, preventative, and
personalized CAD care within the next 5-10 years will
require intensive, collaborative research between
data scientists, Al methodologists, clinicians, and
health systems, focusing on overcoming the outlined
methodological and informatics challenges.
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Baseline EHR/Clinical Imaging Genomics Signals/Wearables
*» Age + Smoking « CAC « PRS « ECG/PCG
* sex + Medications » CCTA/plaque/PCAT « + Monogenic variants « ABPM
+ BP + Comorbidities + CT-FFR «+ Activity tracking
« Lipids + CMR « Sleep monitoring
+ DM + SPECT/PET
Multimodal Fusion Model
+ Early/intermediate/late fusion
* Internally/externally validated
I n
Low Borderline Intermediate High
(<5%) (5-7.4%) (7.5-19.9%) (220%)

Figure 3. Clinical Workflow for Multimodal CAD Risk Stratification.

Data from four key domains (Baseline EHR/Clinical, Imaging, Genomics, and Signals/Wearables) are integrated
into a validated multimodal fusion model. The model outputs actionable risk strata, guiding personalized

clinical decisions as outlined in the practical notes.

Practical Notes:

e  CAC=0 may support deferring statins in low/intermediate risk

e Very high PRS may prompt earlier imaging/intensification

e Wearable-device alerts trigger clinical review but not autonomous therapy
e Ensure fairness and consider federated learning for privacy

ABPM, ambulatory blood pressure monitoring; BP, blood pressure; CAC, coronary artery calcium; CCTA, coronary
computed tomography angiography; CMR, cardiac magnetic resonance; CT-FFR, computed tomography-derived
fractional flow reserve; DM, diabetes mellitus; ECG, electrocardiogram; EHR, electronic health record; PCAT,
pericoronary adipose tissue; PCG, phonocardiogram; PET, positron emission tomography; PRS, polygenic risk

score; SPECT, single-photon emission computed tomography.

CONCLUSION

Multimodal data fusion represents a significant
methodological paradigm shift in CAD risk predic-
tion, propelling the field from coarse, population-
level estimates toward precise, individualized fore-
casts of patient risk, driven fundamentally by innova-
tions in AT and biomedical informatics. This review
has critically synthesized the informatics approaches
and evaluated the evolving methodological landscape
that underpins this transition over the past 15 years.
By systematically deconstructing how diverse data
modalities—imaging, genomics, EHR, and wear-
ables—are being integrated through increasingly
sophisticated Al and ML techniques, we have high-
lighted the complementary strengths harnessed and
the demonstrable, albeit sometimes modest, im-
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provements in predictive performance achieved over
single-modality models.

More importantly from an informatics perspec-
tive, this review underscores that the true value of
multimodal fusion lies not just in incremental AUC
gains, but in its methodological capacity to model the
multifactorial nature of CAD, capture complex non-
linear interactions, and integrate longitudinal data
dynamics—capabilities often beyond traditional risk
assessment tools. We have identified key methodo-
logical patterns, from the utility of specific Al archi-
tectures like deep and graph neural networks for au-
tomated feature learning and cross-modal interac-
tion modeling, to the distinct roles of various data
types, such as PRS providing baseline genetic predis-
position and EHRs offering rich temporal context.
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However, the realization of this paradigm’s full
potential is contingent upon the biomedical infor-
matics community addressing substantial and ongo-
ing methodological challenges. These include devel-
oping robust solutions for data heterogeneity, miss-
ingness, and algorithmic bias; enhancing model
interpretability to foster clinical trust and utility;
and establishing rigorous frameworks for prospective
validation and seamless clinical workflow integra-
tion. These hurdles represent critical areas for future
Al research and methodological innovation.

In summary, multimodal data fusion for CAD risk
prediction serves as a compelling exemplar of AI’s
transformative power in medicine and is a vibrant,
rapidly advancing subfield of biomedical informatics.
It directly aligns with the goals of precision medi-
cine: delivering the right intervention to the right
patient at the right time. By continuing to refine
informatics methodologies for robustly maximally
utilizing the totality of patient data, the Al in medi-
cine community can significantly enhance risk pre-
diction, personalize preventive strategies, and ulti-
mately reduce the global burden of CAD. While the
journey from complex data to actionable clinical
wisdom is ongoing and demanding, the trajectory
toward more informed, precise, and Al-driven
individualized care for patients at risk of CAD is
firmly established.
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