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SUPPLEMENTARY TABLE 1: SUMMARY OF 39 MULTIMODAL FUSION STUDIES FOR 

CAD RISK PREDICTION  

This supplement summarizes 39 empirical studies on multimodal data fusion for coronary artery 
disease (CAD) risk prediction, published between 2009 and 2025. The table highlights the diversity of 
integrated data modalities and analytical approaches. Particularly noteworthy is the consistent, albeit 
modest, improvement in predictive performance (discrimination and reclassification) when imaging or 
genomic data are fused with traditional clinical risk factors. Furthermore, the included studies showcase 
a methodological trend towards adopting advanced machine learning algorithms and validating models 
on external cohorts, signaling a maturation of the field. This comprehensive summary serves as a 
detailed evidence base for the main manuscript. 

The references to this table are provided after the table. 
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Table S1. Summary of 39 Multimodal Fusion Studies for CAD Risk Prediction.  

First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Motwani et 
al. (2017)1 

International/ 
CONFIRM 
registry (17 
centers) 

10,030 pts 
(745 deaths 
over 5 
years) 

CCTA (44 
features) + 
clinical (25 
features) 

All-cause 
mortality/5 
years 

Early 
(feature-level 
fusion) 

Boosted 
ensemble ML 
(information 
gain + 
LogitBoost) 

10-fold 
stratified 
cross-
validation 

AUC = 0.79 (vs 
FRS = 0.61, SIS 
= 0.64, DI = 
0.62) 

NR NR; ML 
outperformed 
all comparators 

M: strong 
design, lacks 
external 
validation 

Betancur 
et al. 
(2018)2 

US/Cedars-
Sinai + 
multicenter 
registry 

2,619 pts 
(239 MACE 
over 3.2 ± 
0.6 years) 

SPECT MPI (25 
imaging vars) + 
stress test (17 
vars) + clinical 
(28 vars) 

MACE (death, 
MI, UA, late 
revasc)/3 
years 

Early 
(feature-level 
fusion) 

Boosted 
ensemble ML 
(info gain + 
LogitBoost) 

10-fold 
stratified 
cross-
validation 

AUC 0.81 vs 
imaging 0.78 

Calibration 
curves 
reported 

NRI = 26% vs MD 
diagnosis (P < 
0.001) 

M: strong 
design, lacks 
external 
validation 

Coenen et 
al. (2018)3 

5-center 
(EU/US/Asia) 

351 pts/ 
525 vessels 
(FFR 
reference) 

CCTA + ML-
derived CT-FFR 

Functionally 
significant 
CAD 
(diagnostic) 

Late (ML 
applied to 
CCTA-derived 
features) 

Deep learning 
model for CT-
FFR 

Internal (per-
vessel and 
per-patient 
analysis) 

AUC = 0.84 (ML-
CT-FFR); CTA 
alone = 0.69 

NR 73% of CTA 
false positives 
correctly 
reclassified 

M: strong 
design, lacks 
external 
validation 

Inouye et 
al. (2018)4 

UK/UK 
Biobank 

22,242 CAD 
cases/ 
460,387 
non-cases 

Genomic 
(metaGRS from 
1.7M variants) + 
Clinical 
(traditional risk 
factors) 

Incident 
CAD/median 
8 years 

Late (model-
level) fusion: 
GRS added to 
clinical risk 
factor model 

 

Cox 
proportional 
hazards 

External 
(metaGRS in 
UK Biobank) 

C-index 
(Clinical-only): 
0.641 (0.633–
0.649) C-index 
(Clinical + 
GRS): 0.655 
(0.647–0.663) 

Adequate; 
stratified 
cumulative 
risk curves 
reported 

Reported; 
significantly 
reclassified 
individuals into 
different risk 
trajectories 

M: strong 
cohort, 
landmark GRS 
validation, 
fusion is an 
additive (late) 
model 

Tesche et 
al. (2018)5 

US/Medical 
University of 
South Carolina 

85 pts/ 159 
lesions 
(FFR ≤0.80) 

CCTA-derived 
FFR via ML vs 
CFD 

Lesion-
specific 
ischemia/ 
diagnostic 

Single-
modality 
algorithmic 
comparison 

ML-based FFR 
vs CFD-based 
FFR 

Internal 
(retrospective 
cohort) 

AUC ~0.84 vs 
0.69 CTA 

FFR-ML: AUC 
= 0.89; FFR-
CFD: AUC = 
0.89; CCTA: 
AUC = 0.61 

NR M: strong 
design, lacks 
multimodal 
integration 

Zhao et al. 
(2019)6 

US/Vanderbilt 
University 
Medical 
Center 

109,490 
adults (CVD 
events NR) 

Longitudinal 
EHR + genetic 
data 

First CVD 
event/10 
years 

Late (genetic 
+ EHR via 
model-level 
fusion) 

LR, RF, GBT, 
CNN, LSTM 

Nested 10-
fold CV 

Best AUROC = 
0.79 (LSTM); 
baseline 
ACC/AHA = 0.73 

NR NR, DL 
outperformed 
baseline 

M: strong 
design, lacks 
external 
validation 

Alaa et al. 
(2019)7 

UK/UK 
Biobank 

423,604 
(4,801 CVD 
events) 

Structured 
clinical + 
lifestyle + self-
reported 
variables (473 
total) 

First CVD 
event/5 years 

Early (AutoML 
feature-level 
fusion) 

AutoPrognosis 
(ensemble ML 
pipeline) 

Internal only AUC = 0.774 
(95% CI: 0.768–
0.780) 

Included in 
pipeline 

NR; 368 more 
cases predicted 
vs Framingham 

M 
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First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Al’Aref et 
al. (2020)8 

Multinational/
CONFIRM 
registry 

13,054 pts 
(2,380 
obstructive 
CAD) 

Clinical (25 
vars) + CACS 

Obstructive 
CAD on 
CCTA/cross-
sectional 

Early 
(feature-level 
fusion) 

XGBoost 
(boosted 
ensemble ML) 

80/20 split + 
10-fold CV 

ML+CACS AUC = 
0.881; ML alone 
= 0.773; CAD 
consortium = 
0.734; UDF = 
0.682 

Calibration 
slopes 
reported 

Net 
reclassification 
improvement 
shown 
graphically  

M: strong 
design, lacks 
external 
validation 

Zhang et 
al. (2020)9 

China/single-
center 
hospital 

62 (32 CAD, 
30 CPNCA) 

ECG (multi-
domain) + PCG 
(multi-domain) 
+ Holter + 
echocardiogra-
phy + 
biomarkers 

CAD 
detection/ 
cross-
sectional 

Early 
(feature-
level) 

Hybrid 
feature 
selection (MI, 
RFE, RF, SVM 
weights) + 
SVM 

Nested CV Accuracy = 
96.67%; SN = 
96.67%; SP = 
96.67%; F1 = 
96.64% 

NR NR M: small sample 
size, no 
external 
validation, but 
methodologic-
ally complete 

Elliott 
(2020)10 

UK/UK 
Biobank 

352,660 
(6,272 
incident 
CAD events 
over 8 
years) 

Clinical risk 
score (PCE) + 
PRS 

Incident 
CAD/median 
8 years 

Late (model-
level fusion: 
PCE + PRS) 

Logistic 
regression + 
PRS 
integration 

I Independent 
cohort (UK 
Biobank) 

PCE = 0.76, PRS 
= 0.61, 
Combined = 
0.78 

Recalibrated; 
PCE alone 
over-
estimated risk 

Net 
reclassification 
improvement = 
4.0% (95% CI: 
3.1%–4.9%) 

M: strong 
design, modest 
gain 

Pickhardt 
et al. 
(2020)11 

US/NIH + 
University of 
Wisconsin 

9,223 
asymptom-
atic adults 
(1,831 CV 
events or 
deaths over 
median 8.8 
years) 

Abdominal CT-
derived 
biomarkers: 
aortic 
calcification, 
muscle density, 
fat ratio, liver 
fat, vertebral 
BMD 

Major CV 
events + all-
cause 
mortality/2–
10-year 
follow-up 

Early 
(feature-level 
fusion of CT 
biomarkers) 

Deep learning 
+ feature-
based 
extraction 

Internal 
cohort; no 
external 
validation 

Combined 
AUROC = 0.811 
(2-year 
survival); 
individual CT 
biomarkers 
outperform 
FRS/BMI 

Adequate; 
hazard ratios 
by quartile 
reported 

Not formally 
reported; CT 
biomarkers 
significantly 
better than 
FRS/BMI 

M: strong 
imaging design, 
lacks 
multimodal 
integration 

Kwan et al. 
(2021)12 

US/Cedars-
Sinai + dual-
center registry 

352 pts/ 
1056 ves-
sels (26% 
revascu-
larized) 

CCTA 
quantitative 
plaque features 
+ clinical risk 
factors 

Revasc (PCI or 
CABG)/ 
within 3 
months 

Late (ML-IRS 
added to 
clinical + 
stenosis 
model) 

ML-IRS Internal 
cohort; no 
external 
validation 

Traditional 
model: 0.69 → 
ML-enhanced: 
0.78 (P < 
0.0001) 

Adequate; 
ML-IRS strati-
fied by revasc 
status 

NRI = 0.636 
(95% CI: 0.503–
0.769) 

M: strong 
imaging design, 
lacks external 
validation 

Sun et al. 
(2021)13 

UK/UK 
Biobank 

306,654 
individuals
/NR CVD 
events over 
8.1 years 

PRS + 
conventional 
clinical risk 
factors 

First-onset 
CVD/median 
8.1 years 

Late (model-
level fusion: 
PRS + clinical) 

Cox 
proportional 
hazards 

Internal 
cohort; 
population-
level 
modeling 

C-index: 0.710 
→ 0.722 
(+0.012) 

Adequate; 
cumulative 
incidence 
curves 
reported 

NRI: ~10% 
(cases), ~12% 
(non-cases) 

M: strong 
cohort, limited 
modeling 
innovation 
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First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Li et al. 
(2021)14 

China/ 
PhysioNet 
multi-center 
dataset 

388 
recordings 
(expanded 
to ~1975 
segments; 
balanced) 

ECG (8s, 2kHz) 
+ PCG (8s, 
1kHz, 4 
frequency 
bands) 

CHD, T2D, 
metabolic 
health 
status/cross-
sectional 

Early 
(feature-
level) 

CL-ECG-Net, 
CL-PCG-Net, 
GA, SVM 

5-fold CV × 10 
repeats 

0.936 (multi-
modal GA+SVM) 

NR NR M: strong 
design, lacks 
external 
validation, 
limited dataset 

Barbieri et 
al. (2022)15 

New Zealand/ 
Nationwide 
administrative 
data 

2,164,872 
(61,927 
CVD 
events) 

Linked adminis-
trative data: 
diagnoses, 
medications, 
encounters 

First CVD 
event/5 years 

Early 
(structured 
feature-level 
fusion) 

DeepSurv (DL 
survival) vs 
Cox 

Internal (sex-
specific 
models) 

R²: 0.468 (DL) 
vs 0.425 (Cox) 
in women 

Good (P < 
0.0001) 

NR M: lacks 
external 
validation 

Miller et 
al. 
(2022)16,17 

US (Cedars-
Sinai + 
multicenter 
reader study) 

240 pts 
(50% 
obstructive 
CAD by 
ICA) 

SPECT MPI + 
physician 
interpretation + 
DL model 
output 

Obstructive 
CAD (≥50% LM 
or ≥70% other 
segments)/ 
diagnostic 

Late (reader 
+ DL fusion) 

CAD-DL (ex-
plainable DL 
model trained 
on separate 
cohort) 

Reader study 
(3 physicians 
with/without 
DL support) 

Physician alone: 
0.747; 
Physician + DL: 
0.779; DL 
alone: 0.78 

NR NRI = 17.5% 
(95% CI: 9.8%–
24.7%) with DL 
support 

M: strong 
design, lacks 
external 
validation 

Lin et al. 
(2022)18 

US + 
Netherlands/ 
PACIFIC trial 

208 
pts/581 
vessels 
(FFR ≤0.80: 
139 ves-
sels; MBF 
≤2.30: 195 
vessels) 

CCTA 
quantitative 
plaque features 
+ PET MBF + 
invasive FFR 

Vessel-
specific 
ischemia 
(FFR) + im-
paired MBF/ 
diagnostic 

Early 
(feature-level 
fusion of 
CCTA 
metrics) 

ML model 
trained on 
NXT trial data 

External 
validation 
(PACIFIC trial) 

FFR prediction: 
AUC = 0.92; 
MBF prediction: 
AUC = 0.80 

Calibration 
plots 
reported; 
good 
agreement 

NR; ML 
outperformed 
visual reads 

M: strong 
external 
validation, 
limited clinical 
variables 

King et al. 
(2022)19 

UK/UK 
Biobank 

272,307 
individuals
/7,036 
incident 
CAD cases 

Integrated PRS 
+ pooled cohort 
clinical 
variables 

Incident 
CAD/12-year 
follow-up 

Late (model-
level fusion: 
PRS-enhanced 
PCE) 

Cox 
proportional 
hazards 

Internal 
cohort; no 
external 
validation 

PRS-enhanced 
PCE: 0.753 (95% 
CI: 0.748–
0.758); PCE 
alone: 0.718 

Adequate; 
cumulative 
risk curves 
reported 

NRI = 9.3% 
overall (cases: 
+11.7%; non-
cases: –2.3%) 

M: strong 
cohort, lacks 
external 
validation 

Vassy et al. 
(2023)20 

US/Million 
Veteran 
Program 

79,151 
individuals
/5,485 
ASCVD 
events 

Genome-wide 
PRS (CAD + 
stroke) + tradi-
tional clinical 
risk factors 

Incident 
ASCVD (MI, 
stroke, 
death)/ me-
dian 4.3 years 

Late (model-
level fusion: 
PRS + clinical) 

Cox 
proportional 
hazards 

Internal 
cohort; multi-
ancestry 
stratified 
analysis 

NR; modest 
improvement in 
discrimination 

Adequate; 
cumulative 
incidence 
curves 
reported 

NRI modest: 
0.38% (men), 
6.79% (women), 
age-stratified 

M: strong 
cohort, limited 
modeling 
innovation 

Khan et al. 
(2023)21 

US + 
Netherlands/ 
MESA + 
Rotterdam 
Study 

3,208 
partici-
pants 
(incident 
CHD over 
10 years) 

Clinical risk 
score (PCE) + 
CACS + PRS 

Incident 
CHD/10-year 
follow-up 

Late (model-
level fusion: 
PCE + CACS + 
PRS) 

Cox 
regression + 
additive risk 
modeling 

Independent 
cohorts 
(MESA, RS) 

CACS alone: 
0.76; PRS 
alone: 0.69; 
Combined: 0.78 

Adequate (χ² 
< 20 for all 
models) 

NRI: +0.19 for 
CACS, +0.04 for 
PRS (only CACS 
significant) 

M: strong 
design, PRS 
contribution 
modest 
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First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Zambrano 
et al. 
(2023)22 

US/Stanford 
Health System 

8,139 pts 
(IHD events 
over 5 
years; 
exact 
count NR) 

Abdominopelvic 
CT (body 
composition 
features) + EMR 
(labs, vitals, 
diagnoses) 

Incident 
ischemic 
heart 
disease/5-
year follow-
up 

Early 
(feature-level 
fusion of CT + 
EMR) 

Gradient 
boosting + 
SHAP 
explainability 

Internal split 
(train/test); 
no external 
cohort 

Combined 
model AUROC = 
0.81; EMR-only 
= 0.78; CT-only 
= 0.76 

Calibration 
curves 
reported; 
good 
agreement 

NR, model 
outperformed 
PCE and 
Framingham 
scores 

M: strong 
design, lacks 
external 
validation 

Pujadas et 
al. (2023)23 

UK/UK 
Biobank 

NR; 
incident 
AF, HF, MI, 
stroke over 
longitud-
inal follow-
up 

Clinical risk 
factors (VRF) + 
CMR indices + 
CMR radiomics 

Incident CVDs 
(AF, HF, MI, 
stroke)/ 
multi-year 
follow-up 

Early 
(feature-level 
fusion of VRF 
+ CMR + 
radiomics) 

SVM Internal split; 
no external 
cohort 

HF: AUC = 0.84 
(VRF+CMR+ 
Rad); AF: AUC = 
0.76; 
MI/stroke: 
lower 

NR NR; radiomics 
showed 
incremental 
value 

M: strong 
design, lacks 
external 
validation 

Durmaz et 
al. (2023)24 

Turkey/Single-
center) 

60 STEMI 
pts 

LGE + cine CMR 
radiomics + 
clinical + CMR 
params 

MACE/follow-
up period NR 

Early 
(feature-
level) 

ML (NN, RF, 
SVM, NB, 
etc.) 

Split-sample + 
repeated 
random 
sampling 

Best model AUC 
= 0.965 

NR Added value vs 
clinical/CMR 
models 
(qualitative) 

L: small 
sample, no 
external 
validation 

Li et al. 
(2024)25 

China/CHERRY 
cohort 

215,744 
(6,081 
ASCVD) 

Demographics 
(age, sex, 
education), 
medication use, 
repeated labs 
(lipids, 
glycemia), BP, 
obesity indices, 
renal function 

5-year ASCVD 
(non-fatal MI, 
CHD death, 
fatal/non-
fatal stroke), 
6,081 events 

Early 
(feature-
level) 

XGBoost 
(tree-based 
boosting), 
LASSO 
regression; 
compared 
with refitted 
China-PAR 
Cox model 

Internal split 
(train/test), 
large-scale 
EHR cohort 
(n=215,744) 

C-stat = 0.792 
(XGB), 0.789 
(LASSO) 

Hosmer–
Lemeshow 
P>0.05; 
calibration 
curves 

NRI 3.9% (1.4%–
6.4%), 2.8% 
(0.7%–4.9%) 

M 

Bock et al. 
(2024)26 

Switzerland 
(BASEL VIII 
study) 

3,522 
(fCAD 
prevalence 
= 32.9%) 

Stress ECG 
signals + 8 
clinical vars + 
cardiologist VAS 

fCAD 
diagnosis/ 
cross-
sectional 

Late (logistic 
fusion of DL + 
ML + clinician 
VAS) 

CARPE ECG 
(ResNet + 
multitask) + 
CARPE Clin. 
(RF) + CARPE 
Coll. (logistic 
fusion) 

Internal 
temporal split 
(75/25) + 
external 
validation 
(THEW 
cohort) 

Internal: ECG = 
0.71, Clinical = 
0.70, Combined 
= 0.74 

Bootstrapped 
CIs; DCA 
curves 
reported 

Imaging 
reduction: up 
to 17.3% 
(CARPE Coll. vs 
cardiologist) 

M: strong 
design, no 
prospective 
impact analysis 

Bock et al. 
subgroup 

(2024)26* 

Israel 
(external 
validation 
cohort) 

916 (fCAD 
prevalence 
= 7.5%) 

Treadmill ECG + 
same 8 clinical 
vars 

fCAD 
diagnosis/ 
cross-
sectional 

Late (same as 
main study) 

CARPE ECG + 
CARPE Clin. 

External 
(THEW 
cohort) 

ECG = 0.80 ± 
0.01, Clinical = 
0.75 ± 0.004 

Good; 
bootstrapped 
CIs 

NR M: external 
only 
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First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Chen et al. 
(2024)27 

China/Suzhou 
Medical 
Association 

608 CAD 
pts/ NR 
MACE 
count 

Lesion-specific 
PCAT radiomics 
(CT-FFR guided) 
+ clinical 
variables 

MACE (CV 
death, MI, 
revasc, UA 
hospital-
ization)/ 
retrospective 

Late (model-
level fusion: 
clinical + 
Rad-score + 
CT-FFR) 

LASSO + 
multivariable 
Cox 
regression 

Internal 
cohort; no 
external 
validation 

Combined 
model: C-index 
= 0.718; AUC = 
0.773 

Adequate; 
Kaplan-Meier 
and calibra-
tion curves 
reported 

NR; 
incremental 
gain shown 

M: strong 
imaging design, 
lacks external 
validation 

Yang et al. 
(2024)28 

China/ 
Shanghai 
General 
Hospital 

1,392 
diabetic 
pts (108 
MACE over 
5 years) 

Clinical + CCTA 
high-risk plaque 
features + PCAT 
radiomics 

MACE/5-year 
follow-up 

Late (model-
level fusion: 
clinical + 
imaging + 
radiomics) 

Multivariable 
Cox 
regression 

Internal split 
(training: 
835; 
validation: 
557) 

Model-1: 0.68; 
Model-2: 0.79; 
Model-3: 0.80 
(P = 0.408 vs 
Model-2) 

Adequate; 
calibration 
curves 
reported 

NR; PCAT 
radiomics not 
incrementally 
predictive 

M: strong 
design, lacks 
external 
validation 

Romero-
Farina et 
al. (2024)29 

Spain/multi-
center cohort 

2,226 
women 
(148 MACE 
in training 
set) 

Clinical 
variables + 
stress test data 
+ gSPECT MPI 
parameters 

4-year MACE 
prediction 

Early 
(feature-level
) 

Cox 
regression 
(CORSWO risk 
score) 

Internal split 
(train/ 
validation) 

Training AUC = 
0.80 (95% CI: 
0.74–0.83); 
Validation AUC 
= 0.78 (95% CI: 
0.70–0.83) 

Brier score = 
0.08; 
calibration 
curves 
reported 

NR M: internal 
validation only; 
no external 
cohort; meth-
odologically 
robust 

Wang et al. 
(2024)30 

China/Public 
datasets (5 
combined) 

NR (from 5 
CAD 
datasets) 

Tabular clinical 
data 
(demographics, 
symptoms, 
labs) 

CAD 
diagnosis/ 
cross-
sectional 

Ensemble 
AutoML 
(AutoGluon) 

AutoML 
ensemble + 
SHAP for 
explainability 

4-fold cross-
bagging 

AUC = 0.9562, 
ACC = 0.9167 

SHAP-based 
feature 
attribution; 
calibration 
curve 

NR; ensemble 
outperformed 
baselines 

M: strong 
performance, 
lacks external 
validation 

Wang et al. 
(2024)31 

China/Multi-
center 

294 (CABG 
pts, MACE 
endpoint) 

Clinical (52 
vars) + NT-
proBNP + SII + 
echocardiogra-
phy 

MACE/long-
term follow-
up 

Early 
(feature-level 
fusion) 

LASSO + Cox 
regression 

External 
validation 
cohort 
(n=118) 

C-index: 0.768 
(dev), 0.633 
(val) 

Good 
(calibration 
curves) 

NR M: lacks 
reclassification 
metrics 

Zhan et al. 
(2024)32 

China/North 
Sichuan 
Medical 
College 

239 angina 
pts (46 
MACE) 

CCTA-derived 
PCAT radiomics 
+ FAI + clinical 
variables 

MACE (CV 
death, MI, 
revasc, UA 
hospitaliza-
tion)/ 
retrospective 

Late (model-
level fusion: 
clinical + FAI 
+ radiomics) 

ML-based 
logistic 
regression 
(feature 
selection 
method NR) 

Internal split 
(train: 167; 
validation: 
72) 

Radiomics 
model: AUC = 
0.83 (train), 
0.71 
(validation); P < 
0.05 vs others 

Good; 
calibration 
curves 
reported 

NR, radiomics 
model showed 
incremental 
gain 

M: strong 
imaging design, 
lacks external 
validation 

Badawy et 
al. (2025)33 

Egypt/Public 
datasets (UCI 
repository) 

NR 
(combined 
from 4 
datasets) 

Multi-source 
tabular clinical 
data 

CAD 
diagnosis/ 
cross-
sectional 

Late fusion 
via ensemble 
learning 

LR, RF, XGB, 
SVM, NB, DT, 
KNN → 
ensemble 
model 

Internal 
cross-
validation 

Accuracy = 
98.46%, Recall 
= 100%, F1 = 
98% 

NR NR; ensemble 
outperformed 
all single 
models 

M: strong 
performance, 
lacks external 
validation 
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First 
author 
(year) 

Country/ 
setting 

N (events) Modalities 
(details) 

Endpoint and 
horizon 

Fusion 
strategy 

Algorithm(s) Validation AUC/C-index  
(95% CI) 

Calibration Reclassification 
(NRI/IDI) 

PROBAST 
overall 

(L/M/H)** 

Gabriel et 
al. (2025)34 

US/Emory + 
Georgia Tech 

25,514 pts 
(2.93% ex-
perienced 
MACE over 
10 years) 

CAC + ECG + lab 
+ clinical risk 
scores 

10-year MACE 
/retrospec-
tive 

Late 
(sequential 
model-level 
integration) 

XGBoost + 
SHAP 

Internal 
cross-
validation (5-
fold × 10 
seeds) 

AUC = 0.883 ± 
0.012 

Good; 
decision 
curves and 
SHAP 
interpretation 

NR; 30% gain 
over CAC 

M: large cohort, 
strong 
modeling, 
preprint 

Li et al. 
(2025)35 

China/Multi-
center (2 
centers) 

1,024 
STEMI pts 
(169 MACE 
events) 

Cine MRI 
radiomics + 
LVEF + LGE + 
clinical 

MACE/median 
follow-up 3.1 
years 

Early (Rad-
score + 
imaging + 
clinical) 

Logistic 
regression + 
Cox model 

External 
validation 
(205 pts) 

AUC = 0.83 
(train), 0.71 
(test) 

Good fit 
(calibration 
curves, P > 
0.05) 

Risk 
reclassification: 
33% (train), 34% 
(test) 

M: good design, 
lacks 
calibration 
stats 

Li et al. 
(2025)36 

China/ 
Prospective, 
dual-center 

190 (CAD 
confirmed 
via CAG) 

Oral micro-
biome (16sRNA) 
+ tongue 
hyperspectral 
imaging 

CAD 
diagnosis/ 
cross-
sectional 

Late fusion 
(GP-GB-SVM 
ensemble) 

30 ML models 
+ fusion 
model (Gaus-
sian process + 
gradient 
boosting + 
SVM) 

Internal + 
external test 
sets 

AUC = 0.92 
(internal), 0.86 
(external) 

Calibration 
curves 
reported 
(good fit) 

Not reported; 
fusion model 
outperformed 
all single 
models 

M: strong 
design, lacks 
long-term 
outcome 

Pezel et al. 
(2025)37 

France/ 
multicenter 
(Jacques 
Cartier, 
Lariboisière, 
American Hos-
pital of Paris) 

2,038 pts 
(281 MACE 
over 7 
years) 

CCTA plaque 
metrics + stress 
cardiac MRI + 
clinical + ECG 

MACE (CV 
death + non-
fatal 
MI)/median 7-
year follow-
up 

Early 
(feature-level 
fusion of 
imaging + 
clinical + 
ECG) 

LASSO + 
XGBoost 
(multimodal 
feature-level 
fusion) 

Internal + 2 
external 
cohorts 

ML model: 0.86; 
external: 0.84 
and 0.92 

Good; 
calibration 
curves 
reported 

NR; ML 
outperformed 
all comparators 

M: strong 
design, 
excellent 
external 
validation 

Zhang et 
al. (2025)38 

China/ 
Shanghai 
University of 
Traditional 
Chinese 
Medicine 

488 CAD 
pts 
(stenosis 
severity by 
ICA) 

Facial 
morphometrics 
+ tongue/lip 
images + pulse/ 
pressure wave-
forms + lab 
biomarkers 

Coronary 
stenosis 
severity/ 
diagnostic 

Early + adap-
tive weighting 
(transformer-
based fusion) 

Transformer + 
residual 
modules + 
adaptive 
fusion 

Internal + 
external 
validation 

Accuracy: 90% 
(train), 85% 
(external 
validation); 
AUC NR 

NR NR M: innovative 
design, external 
validation 
present 

Zou et al. 
(2025)39 

China/multi-
center 

237 hyper-
tensive 
CAD pts/ 
NR MACE 

PCAT radiomics 
+ CT-FFR + 
clinical features 

MACE/2-year 
follow-up 

Early 
(feature-level 
fusion) 

LASSO + LDA Internal split 
(train/test = 
165/72) 

AUC = 0.886 
(train), 0.786 
(test) 

Good; 
calibration + 
decision 
curves 

NR; specificity 
improved 

M: strong 
imaging fusion, 
lacks external 
validation 

See legend on following page. 
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* External validation from Bock et al. (2024). 

** Risk of bias was assessed using the PROBAST tool across four domains—participants, predictors, outcomes, and analysis. Studies were rated as Low (L), 

Medium (M), or High (H) risk of bias. Most studies were rated Medium due to limitations such as lack of external validation, incomplete calibration reporting, 

or unclear fusion strategy definitions. Studies with high bias risk were excluded during screening. 

Abbreviations: ACC/AHA, American College of Cardiology/American Heart Association; AF, atrial fibrillation; AI, artificial intelligence; ASCVD, atherosclerotic 

cardiovascular disease; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; BMD, bone mineral density; BMI, body mass 

index; BP, blood pressure; CABG, coronary artery bypass grafting; CACS, coronary artery calcium score; CAD, coronary artery disease; CAG, coronary 

angiography; CARPE, Coronary Artery disease Risk Prediction using ECG (study/model name); CCTA, coronary computed tomography angiography; CFD, 

computational fluid dynamics; CHD, coronary heart disease; CL-ECG-Net, Contrastive Learning Electrocardiogram Network; CL-PCG-Net, Contrastive Learning 

Phonocardiogram Network; China-PAR, Prediction for ASCVD Risk in China equation; CI, confidence interval; C-index, concordance index; CMR, cardiac 

magnetic resonance; CNN, convolutional neural network; CORSWO, Coronary Risk Score in Women; CT, computed tomography; CTA, computed tomography 

angiography; CV, cross-validation; CVD, cardiovascular disease; DCA, decision curve analysis; DI, Duke Index; DL, deep learning; DT, decision tree; ECG, 

electrocardiogram; EHR, electronic health record; EMR, electronic medical record; fCAD, functionally relevant CAD; FAI, fat attenuation index; FFR, fractional 

flow reserve; F1, F1-score (harmonic mean of precision and recall); FRS/BMI, Framingham Risk Score / body mass index; GA, genetic algorithm; GBT, gradient 

boosting trees; GP, Gaussian process; GB, gradient boosting; GRS, genomic risk score; gSPECT, gated single-photon emission computed tomography; HF, heart 

failure; HR, hazard ratio; ICA, invasive coronary angiography; IDI, integrated discrimination improvement; KNN, k-nearest neighbors; L, low risk of bias; LASSO, 

least absolute shrinkage and selection operator; LDA, linear discriminant analysis; LGE, late gadolinium enhancement; LM, left main coronary artery; LR, 

logistic regression; LSTM, long short-term memory; LVEF, left ventricular ejection fraction; M, medium risk of bias; MACE, major adverse cardiovascular 

events; MBF, myocardial blood flow; MD, medical doctor; MESA, Multi-Ethnic Study of Atherosclerosis; MI, myocardial infarction; ML, machine learning; ML-IRS, 

ML-based ischemic risk score; MPI, myocardial perfusion imaging; NB, Naïve Bayes; NR, not reported; NRI, net reclassification improvement; NXT trial, Next 

Steps Toward CT-FFR trial; PCAT, pericoronary adipose tissue; PCE, pooled cohort equations; PCG, phonocardiogram; PCI, percutaneous coronary intervention; 

PET, positron emission tomography; PMID, PubMed identifier; PROBAST, Prediction model Risk Of Bias Assessment Tool; PRS, polygenic risk score; pts, patients; 

Rad-score, radiomics score; revasc, revascularlization; RF, random forest; RFE, recursive feature elimination; RS, Rotterdam Study; SPECT, single-photon 

emission computed tomography; SN, sensitivity; SP, specificity; SHAP, SHapley Additive exPlanations; SIS: Segment Involvement Score; STEMI, ST-elevation 

myocardial infarction; SVM, support vector machine; T2D, type 2 diabetes; THEW, Telemetric and Holter ECG Warehouse; UA, unstable angina; UDF, updated 

Diamond–Forrester model; VAS, visual analog scale; VRF, conventional vascular risk factors; XGB, eXtreme Gradient Boosting (short form of XGBoost); XGBoost, 

eXtreme Gradient Boosting. 
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