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ABSTRACT 

The hematopoietic stem cell (HSC) is a unique cell positioned highest in the hematopoietic hierarchical 
system. The HSC has the ability to stay in quiescence, to self-renew, or to differentiate and generate all 
lineages of blood cells. The path to be actualized is influenced by signals that derive from the cell’s 
microenvironment, which activate molecular pathways inside the cell. Signaling pathways are commonly 
organized through inducible protein–protein interactions, mediated by adaptor proteins that link activated 
receptors to cytoplasmic effectors. This review will focus on the signaling molecules and how they work in 
concert to determine the HSC’s fate. 
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THE SIGNAL 

In the Tractatus Logico-Philosophicus, Ludwig 
Wittgenstein stated that “the limits of my language 
are the limits of my world.”1 This assertion of 
Wittgenstein’s may guide us while we try to decipher 
the sophisticated pattern of cell communication. To 
date, we have accumulative data, which supports the 
notion that cells do communicate during their 
existence. Remarkably, in mammalian cells, there is 
evidence for cell communication, even in its extreme 
form as in the case of cancer cells,2 cells in qui-
escence, or during senescence and apoptosis.3 Thus, 
we may hypothesize that every cell in a multicellular 
organism has the ability to communicate. Similar to 
any other language, the molecular message has to be 
accurate. Therefore, in the cell, the communication 
is tightly regulated, and mistakes may lead to dismal 
outcomes. An incorrect message processing may 
promote a severe disease.  

Signaling is frequently a reciprocal process, in 
which different populations of cells exchange 
molecular signals to induce complex cellular 
architectures. Thus, one cell type can produce a 
soluble factor that promotes the differentiation, 
function, and survival of a target cell. Over the past 
five decades, many forms of signal elements were 
discovered and were termed as growth factors, 
neurotransmitters, interleukins, cytokines, chemo-
kines, and hormones. These factors are all signals, 
which are produced under specific physiological 
conditions in order to interact and activate a specific 
receptor on the surface of target cells. Thus, 
messages are delivered in order to stimulate cell 
activities in relation to the organism’s physiological 
condition and requirements. Accordingly, signaling 
is essential for the unification of a single cell with its 
environment, and in the case of the multicellular 
organism to bond the single cell with the whole.  

THE TRANSDUCTION 

In Wittgenstein’s Philosophical Investigations, 
language is released from its confining stasis and 
takes part in the process of becoming, since 
“Language is itself the vehicle of thought” (remarks 
329).4 Such communication processes are called 
transduction when referring to the living organism. 
Transduction is the processing sequence of the 
signal. The root “duce,” meaning “to lead” in Latin, 
marks the movement of a message from the ligand-
activated receptor into the cell. Thus, the signal 
becomes synonymous with the message, and trans-

duction correlates with the understanding process. 
Such processes evolved into sophisticated internal 
cell machineries characterized by unique forma-
tions.5 The first response to the activated receptor is 
the recruitment of signaling molecules. These 
regulatory proteins are frequently constructed in a 
cassette-like fashion from one or more domains that 
mediate molecular interactions or have enzymatic 
activity.6,7 In the evolutionary history of living 
organisms a diverse array of protein domains has 
evolved to interact with a specific sequence on a 
target protein leading to a communication mechan-
ism for signaling molecules in a network influenced 
by activated receptors.8 Such domains can be viewed 
as portable units of biological function that provide 
a mechanism for the evolution of new cellular 
activities and new molecular connections within the 
cells.9,10 Interaction domains can target proteins to a 
specific subcellular location, provide a means for 
recognition of protein posttranslational modifica-
tion or chemical second messengers, establish the 
formation of multiprotein signaling complexes, and 
control conformation, activity, and substrate speci-
ficity of enzymes.11 In signal transduction, enzymes 
(kinases, for example) often generate modified 
amino acids on their substrates that are then recog-
nized by interaction modules. An example of such a 
molecular communication system is the phosphor-
tyrosine (pTyr)-Src homology 2 (SH2) domain-
based signal transduction.12 The binding of a ligand 
to the extracellular domain of a receptor such as 
tyrosine kinase (RTK) induces dimerization of the 
receptor, leading to the activation of the intrinsic 
tyrosine kinase and intermolecular autophos-
phorylation.13 This induces a physical association 
between SH2-containing cytoplasmic signaling 
proteins and the activated receptor. The SH2 
domains directly recognize phosphorylated tyrosine 
residues; they also have independent binding sites 
for residues surrounding the phosphotyrosine 
within a polypeptide chain. Receptor phos-
phorylation therefore creates a SH2 binding site on 
the receptor; the receptor sequences flanking the 
phosphotyrosine dictate which particular SH2 
domains will bind with high affinity to which 
tyrosine-phosphorylated receptor.14 This mechanism 
can induce cells to proliferate, migrate, and differen-
tiate, or, in cases of mutations, can result in dis-
orders which contribute to cancer development.15 
Hence, tyrosine-based signaling is of greatest 
interest both for understanding the regulation of the 
normal cell and for defining the alterations in signal 
transduction that occur in cells with aberrant tyro-
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sine kinase activity. The principles established for 
phosphorylation-dependent interactions have re-
cently been extended to other forms of posttrans-
lational modifications because N-glycosylation, 
acetylation, methylation, and ubiquitination of 
proteins can all function like phosphorylation to 
control modular protein interactions.16–18  

SIGNAL TRANSDUCTION AND 

HEMATOPOIETIC STEM CELLS  

“Everyday language is a part of the human organism 
and is no less complicated than it.”1 The inherent 
role of communication in the organism manifests 
distinctively in the hematopoietic stem cell (HSC). 
The HSC is a unique cell positioned highest in the 
hematopoietic hierarchical system. The HSC has the 
ability to stay in quiescence (cell cycle arrest in G0), 
to self-renew, or to differentiate and generate all 
lineages of blood cells.19–21 Since the pioneering 
work of James Till and Ernest McCulloch who 
showed that single cells could yield multilineage 
descendants while preserving the multipotency of 
the mother cells,22 the HSC was the focus of studies 
aiming to define molecular and signaling pathways 
and how they work in concert to determine their 
phenotypic and functional characterization.23 For 

more than five decades, the unique capacities of 
HSCs have been applied to regenerate the hemato-
poietic system in the procedure of bone marrow 
transplantation.24 Thus the HSC represents an 
exclusive sample for signaling, which governs the 
cell’s end and, sequentially, that of the organism as a 
whole.  

Signal Transduction in the HSC-niche 

Synapse 

A wide range of experimental evidence suggests that 
the function of the HSC to retain both self-renewal 
and multilineage differentiation after transplanta-
tion is dependent on signals that derive from the 
HSC microenvironment (also termed the HSC 
niche)25 (Figure 1). Postnatally, the bone marrow is 
the primary site for HSC maintenance and hemato-
poiesis. Early studies formulating the osteoblastic 
niche theory showed that primitive cells tended to 
localize towards the endosteal margins of the bone, 
leading to the hypothesis that the bone environment 
regulates hematopoiesis.26 Furthermore, largely 
mesenchymal “stromal” cell cultures and osteoblast 
differentiated in culture from human bone marrow 
stromal cells could maintain primitive hemato-
poietic cells ex vivo.27 However, the “osteoblastic” 

 

Figure 1. Ligands Derived from the HSC Microenvironment Induce Receptors on the HSC to Activate Signal 

Molecules Inside the Cell which Determine the Cell’s Fate. 
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niche theory was challenged by studies showing that 
osteoblasts depleted by Bgn deficiency or 
osteoblastic cells depleted by treatment with gan-
ciclovir had no acute effect on HSC frequency.28,29 
Current data suggest that there are specialized 
niches for distinct types of hematopoietic stem and 
progenitor cells, and each niche may be created by 
multiple cell types, which in turn influences the 
HSC.30 The HSCs are found mainly adjacent to 
sinusoid throughout the bone marrow, where 
endothelial cells and mesenchymal stromal cells 
promote HSC maintenance by producing SCF, 
CXCL12, IL-6, RANKL, and Jagged1.31 Thus, while 
osteoblasts may have a secondary influence on the 
HSC, both endothelial cells and mesenchymal 
stromal cells produce factors which can potentially 
directly interact with the HSC and regulate its 
activity.  

A complex molecular cross-talk between the HSC 
and the niche controls the balance between self-
renewal and differentiation. It is commonly 
assumed that this balance is achieved by asym-
metrical cell division through which one daughter 
cell maintains the stem cell identity and the other 
becomes differentiated.32 This asymmetry can be 
achieved by environmental signals, which create 
pro-differentiation or pro-renewal environments.33  

QUIESCENCE 

Adults’ HSCs are mostly quiescent with approxi-
mately 95 % in the G0 phase of the cell cycle. The 
maintenance of a dormant pool of non-cycling and 
metabolically inactive HSCs was suggested as a 
protective mechanism against exhaustion of limited 
self-renewal potential.34,35 In its quiescent form, the 
maintenance of HSCs is tightly regulated by signals 
from the environment. Ang1 is a ligand for the 
Tie2/Tek receptor which is expressed by endothelial 
cells, osteoblast cells, and HSCs.36 Upon interaction, 
the Tie2/Ang1 complex induces signaling, which 
activates B1-integrin and N-cadherin, thus pro-
moting HSC dormancy in vivo.36 Tie2 is a tyrosine 
kinase receptor that in endothelial cells was demon-
strated to recruit signaling proteins such as Grb7, 
Grb2, Shp2, and Shc1, which activate signaling 
pathways such as pi3K and MAP kinases.37 
However, which of these pathways promote 
quiescence of HSCs is yet to be revealed.  

Another cytokine that maintains quiescent HSCs 
is thrombopoietin (TPO), the ligand for c-MPL 
receptor.38 Various tissues, which participate in 

hematopoiesis, expressing c-MPL, include bone 
marrow, spleen, and fetal liver.39 Long-Term-HSCs 
(LT-HSCs) expressing c-MPL receptor were found in 
correlation to cell cycle quiescence and are closely 
associated with TPO-producing osteoblastic cells in 
the bone marrow.38 The binding of TPO to c-MPL 
induces receptor homodimerization and recruitment 
of Janus kinase 2 (JAK2), which phosphorylates 
tyrosine residues within the receptor itself.40 The 
phosphorylated residues Tyr625 and Tyr630 
stimulate the downstream cascade signal transducer 
and activator of transcription (STAT), phos-
phoinositide 3-kinase (PI3K), and mitogen-activated 
protein kinase (MAPKs).41 Additionally, the adaptor 
protein Lnk was revealed as an inhibitor of JAK2 in 
HSCs following TPO stimulation,42–45 and as a 
regulator of the resistance capacity of normal and 
cancerous HSCs in response to irradiation 
treatment.46 Thus, the MPL/JAK2/Lnk pathway can 
be concluded to be a gatekeeper for HSC quiescence.  

Signaling by TGF-/Smad was also proposed to 
participate in maintaining HSC quiescence.47 In 
vitro culture studies revealed the inhibitory effect of 
TGF- on HSC proliferation and that the neutraliza-
tion of TGF- in vitro released HSC from 
quiescence.48 Several mechanisms were suggested 
for the inhibitory effect of TGF- on HSC 
proliferation, including alteration in cytokine 
receptor expression and stimulation of cyclin-
dependent kinase inhibitors such as p21 and p27.49 
However, conditional knockout mouse strategies 
aiming to elucidate the direct effect of TGF- 
signaling on the HSC in vivo revealed normal self-
renewal and no effect on HSC proliferation.50 
Therefore, to date, Tie2/Ang1 and MPL/TPO/Lnk 
signaling pathways are the most critical pathways 
that regulate HSC quiescence and thus are the ideal 
target for modifications of HSC quiescence.  

SELF-RENEWAL 

The ability of the HSC to self-renew is regulated by 
an exclusive array of signaling, e.g. interferons, 
Hedgehog, and Wnt.51 Recent evidence strongly 
suggests that Wnt signaling has an important 
regulatory role in hematopoietic progenitors/stem 
cells during both fetal and adult development.52 Wnt 
proteins represent a family of secreted signaling 
molecules that are expressed in diverse tissues. 
Wnts act by binding to two types of receptor 
molecules. One is the Frizzled family of seven-pass 
transmembrane proteins, which contain a cysteine-
rich extracellular domain that binds to Wnt 
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proteins.53 The second is a subset of the low-density 
lipoprotein receptor-related protein (or the LRP) 
family, specifically, LRP-5 and LRP-6.54–56 It was 
demonstrated that both LRP-5/6 and Frizzled are 
required to activate functionally the downstream 
components of the canonical pathway.57 In the 
absence of a Wnt signal, β-catenin is subjected to 
rapid degradation via association with a protein 
complex that includes the scaffold protein Axin and 
the serine/threonine kinase, glycogen synthase 
kinase-3 beta (GSK-3). In this complex, β-catenin is 
phosphorylated at its NH2 terminus by GSK-3 and 
thus targeted for ubiquitination and degradation by 
proteasomes.52 Axin acts as a scaffold to enhance 
significantly the ability of GSK-3 to phosphorylate 
catenin. The binding of Wnt proteins to their 
receptors inhibits phosphorylation of β-catenin by 
GSK-3. This prevents β-catenin’s degradation and 
results in stabilization and translocation of β-
catenin to the nucleus, where it binds to members of 
the LEF/T-cell factor (TCF) family of transcription 
factors.52 The LEF/TCF proteins are normally assoc-
iated with the transcriptional repressor, Groucho, 
which suppresses their activity and represses gene 
transcription.58 The binding of β-catenin relieves 
this repression and allows LEF/TCF factors to 
induce expression to the appropriate target genes.52 
Typically, the downstream effectors for transcrip-
tional activation target genes are FGF20, DKK1, 
WISP1, MYC, and CCDN1.31 The second pathway, 
“non-canonical Wnt signal,” does not involve β-
catenin activity and regulates polarization of the 
cells and Ca2+ concentration to activate protein 
kinase C and calmodulin-dependent kinase.59  

During fetal hematopoiesis, Wnt proteins—
specifically, Wnt5A and Wnt10B—are expressed in 
the embryo’s yolk sac and the fetal liver. It was 
shown that conditioned media containing Wnt1, 
Wnt5A, or Wnt10B stimulate the stem cell growth 
factor.60 Moreover, the exposure of CD34+Lin– 
human hematopoietic progenitors to Wnt5A, which 
was found to be expressed in these precursors, 
promoted the expansion of undifferentiated progen-
itors in the presence of stromal cells. Overexpres-
sion of activated β-catenin in long-term cultures of 
HSCs induced cells to enter the cell cycle and grow 
in long-term cultures.61 These expanded HSCs also 
retained the functional characteristics of HSCs, 
following transplant into allelically distinct irradi-
ated mice. Inhibition of Wnt signaling in HSCs by 
overexpression of the inhibitor of canonical Wnt 
signaling, Dickkopf1 (Dkk1), resulted in the induc-

tion of cell cycling and reduction in the repopulating 
ability of transplanted induction mice.62 In addition, 
the inhibitor of GSK-3β delays cell cycle progression 
of CB-CD34+ cells, and promotes ex vivo-expanded 
HSCs.63 These studies demonstrate that Wnt signal-
ing is important in the maintenance and self-
renewal of hematopoietic stem and progenitor cells.  

Type I (α and β) and type II () interferons 
(IFNs) belong to a family of cytokines which orches-
trate numerous immunological and cellular 
processes such as cell motility, cell proliferation, 
antibody response, graft rejection, natural killer cell 
recruitment, and macrophage activation.64 Type I 
and type II IFNs signal through distinct but related 
pathways. Interferon receptors bind to JAKs and to 
signal transducers and the activator of transcription 
(STATs), thus having the potential to activate 
various molecular signaling pathways.65 The main 
pathway of response to IFNα/β requires two 
receptor subunits, two JAKs, two STATs, and the 
interferon response factor (IRF) family transcription 
factor p48. Dimerization of the receptor leads to 
initiation of the tyrosine-phosphorylated cascade, 
where JAK1 phosphorylates and activates Tyk2, 
which cross-phosphorylates JAK1, resulting in 
activation and sequential phosphorylation of Y466 
of IFNAR1, Y690 of STAT2, and Y701 of STAT1.66 
Upon IFN receptor activation the SH2 domain of 
STAT2 interacts with pY466 of IFNAR1 followed by 
the phosphorylation of both STATs and the dissocia-
tion of the heterodimer from the receptor.66 The 
activated STATs then transport to the nucleus where 
they bind to specific DNA sequences and stimulate 
transcription. Most cell types stop proliferation in 
response to IFNα.67 However, in vivo studies in 
mouse models revealed that high levels of IFNα 
induce HSC proliferation.68,69 Thus, IFNα signaling 
must be fundamentally different in the HSC. Mice 
that were genetically deficient for a negative 
regulator of type I interferon signaling, interferon 
response factor-2 (IRF2), exhibited enhanced 
proliferation of HSCs which impairs the ability to 
repopulate the bone marrow of irradiated mice,68 
indicating that this cell population was no longer 
fully functional. In addition, high levels of IFNα 
directly induced wild-type HSCs to exit quiescence 
and transiently proliferate in vivo.68 In spite of the 
HSC unique response to IFNα, it was shown that 
STAT1 is required for IFNα-mediated exit from 
dormancy,69 indicating that the unusual effect on 
proliferation is mediated by a canonical IFN signal-
ing component. Indeed, these studies show that 
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IFNα induces HSC proliferation; however, it is yet to 
be determined how the HSC uniquely interprets 
canonical IFNα signaling. Interestingly, in contrast 
to IFNα, it was demonstrated that IFNγ negatively 
modulates self-renewal of the human HSC70 and 
impairs proliferation of HSC in mice.71 Thus in the 
HSC, the role of IFN type I signaling is distinctive 
from the role of IFN type II.  

The Hedgehog (Hh) pathway is a highly 
conserved developmental pathway which regulates 
the proliferation, migration, and differentiation of 
cells during development.72 It is typically active 
during development, but silenced in adult tissues, 
except during tissue regeneration and injury 
repair.73 The Hedgehog (Hh) ligand binds to the 
transmembrane receptor Patched (Ptc) and subse-
quently allows the signaling function of a second 
transmembrane protein, Smoothened (Smo), to be 
activated. Hedgehog is proposed as a negative 
regulator of the HSC quiescence.74 It was 
demonstrated that constitutive activation of the Hh 
signaling pathway in Ptc heterozygous (Ptc-1+/−) 
mice resulted in induction of cell cycling and 
expansion of primitive bone marrow hematopoietic 
cells.74 Deletion of Smo in utero in transgenic mice 
supports this hypothesis and demonstrates an 
impaired stem cell self-renewal and inhibition in the 
engraftment activity of the HSC.75 Furthermore, the 
common downstream positive effector of Hh 
signaling, Gli1, has been shown to play a critical role 
in normal and stress hematopoiesis.76 However, in 
some studies the conditional loss of Smo within 
adult HSCs is dispensable for hematopoiesis.77,78 
These conflicts might be due to the difference 
between the mouse model and the conditional 
system used to impair Hh signaling.  

DIFFERENTIATION 

The main purpose of the HSC is to maintain and 
keep the hematopoietic system functioning under 
normal or stress conditions; therefore, the HSC has 
the capacity to differentiate and generate all blood 
cells in response to environmental signals which 
deliver the organism’s requirements under specific 
conditions. Hematopoietic stem cells were studied 
extensively in order to identify the molecular players 
and routes, which distinguish differentiation from 
self-renewal.  

A wide array of receptors, including IL-3R, IL-
11R, IL-7R, IL-6R, EPOR, MPL, and KIT, induce 
differentiation.35 This is due to a network of signal-

ing molecules such as MAPKs pathways which can 
determine the HSC’s fate towards differentiation.79  

The MAPKs are a family of serine/threonine 
kinases that play an essential role in signal trans-
duction after receptor stimulation. Three major 
groups of MAPKs have been characterized in 
mammals, including ERKs, JNKs, and P38MAPK.80  

The kinases ERK1 and ERK2, also known as 
p44MAPK and p42MAPK, respectively, were identified 
as growth factor-stimulated protein kinases phos-
phorylating MAP-2 and myelin basic protein.81 They 
have more than 80% aa sequence similarity and can 
be activated by a wide variety of stimuli, including 
growth factors, serum, and cytokines.80 Upon activa-
tion, ERK1/2 phosphorylate and regulate the activity 
of cytoplasmic molecules and nuclear proteins, 
which in turn can control gene expression.81  

Studies on differentiation-competent cell lines 
revealed the importance of the ERK signaling 
module in regulating myeloid, erythroid, and mega-
karyocyte differentiation.79 Furthermore, ERK1/2-
mediated phosphorylation of the C/EBPα transcrip-
tion factor on serine residue 21 was found to 
regulate negatively the activity of C/EBPα and its 
ability to induce neutrophil differentiation.82 The 
leucine zipper transcription factor C/EBPα plays a 
critical role in regulating myelopoiesis, and mice 
deficient for C/EBPα lack mature granulocytes and 
accumulate immature myeloblasts in the bone 
marrow. The underlying molecular mechanism was 
found to involve regulation of expression of a variety 
of cell-cycle-modulating proteins, including c-myc, 
c-fos, p21CIP1, cyclin D1, and cyclin D3. In addition 
ERK MAPK signaling were shown be involved in the 
regulation of early myeloid commitment of the 
HSC.83 Taken together, these results suggest that 
activation of the ERK pathway is required for 
normal hematopoiesis.  

The JNK MAPKs are also known as stress-
activated protein kinases. Downstream substrates of 
JNKs include the transcription factors c-Jun, Elk-1, 
p53, ATF-2, and NFAT; MAPs; and proapoptotic 
Bcl-2 family members, including Bid, Bax, and 
Bim.84 Although JNK proteins were first identified 
as kinases that were activated by a stress- and 
apoptosis-inducing agent, JNKs are now known to 
be activated by a variety of growth factors that 
regulate proliferation, differentiation, and survival 
of hematopoietic cells, including EPO and SCF, as 
well as TPO, IL-3, and GM-CSF.79 Furthermore, 
several studies focusing on JNK function in 
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hematopoietic cell systems revealed the importance 
of the JNK signaling module in regulating erythro-
poiesis.85 Inhibition of JNK activity in primary 
mouse bone marrow cells reduced the number of 
burst-forming unit–erythroid (BFU-E), whereas the 
more differentiated colony-forming unit–erythroid 
(CFU-E) were not affected. Moreover, it has been 
reported that disruption of the upstream JNK 
regulator MEKK1 causes embryonic death as a result 
of defects in erythrocyte differentiation, further 
indicating that the MEKK1–JNK signaling pathway 
is indeed essential for erythropoiesis.86 In addition, 
JNK1 was demonstrated to interact physically with 
the DNA-binding domain (DBD) of C/EBPα in vitro 
and in vivo.87 These studies demonstrate the 
importance of JNK signaling in the regulation of 
erythropoiesis and myelopoiesis.  

PERSPECTIVES 

Understanding the signaling pathways that 
determine HSC fate is important for the success of a 
wide array of medicinal applications. These include 
HSC transplantation and cancer treatments, and 
may help refresh treatments strategies for auto-
immune diseases as well as viral and bacterial 
infections. However, in spite of the vast number of 
studies focusing on the HSC, since the first 
successful bone marrow transplantation five 
decades ago, minor progress has been seen in the 
application of HSC studies. The reason may be 
found in the rarity of the HSC, which severely limits 
our ability to study their biochemistry. This also 
explains the nature of most studies conducted on 
HSCs, which mainly describe the phenomena and 
not the mechanisms—a trajectory that delays our 
ability to apply knowledge to practice. The 
prospective of HSCs in medicine is clear. While the 
potential to create red blood cells or any other type 
of blood cells, or the potential to expand HSCs, is 
driving the imagination of the drug industries as 
well as curious basic scientists to its limits, today it 
is clear that only a solid biochemical effort may 
bridge the gap from potency to concrete application.  

The persistent study of the HSC is progressing 
forward, step by step, or gene by gene, via 
genetically modified mouse models. These investiga-
tions reveal the complexity of pathways and protein 
networks, which determine the HSC’s ends in self-
renewal, differentiation, and quiescence. Studies 
have strikingly demonstrated that at times one 
pathway is involved in all three fates of the HSC, 
leading to the assertion that the physiological con-

dition advancing toward the HSC’s final fate does 
not reside in a single route, but within a complex of 
interactions between several signaling pathways, 
and within a web of protein clusters. To date, we 
know that, downstream to activated receptors, 
protein clusters, which contain kinases, phospha-
tases, and adaptor proteins, are formed in order to 
activate transcription factors and sets of genes, 
which will govern the HSC’s fate. However, in order 
to uncover these intricate interactions of complexes 
and proteins which lead to the final destiny of the 
HSC, we have to transform our research strategies 
and invest our efforts in developing technologies 
which can reveal these types of complexes. Thus, in 
addition to genetic profiling of normal and cancer-
ous HSCs,88 it is necessary to develop capacities to 
apply mass spectrometry technology in HSC 
research. This may reveal the protein networks 
which are formed in response to receptor induction 
towards differentiation,89,90 or in special cases such 
as blood diseases and malignancies during preg-
nancy.91,92 Finally, another strategy, which is applied 
in our lab, aims to understand protein interactions 
in the HSC via the case of adaptor proteins, which 
are known to be in the hub of cell signaling, and 
which are central to the protein complexes and 
protein webs. We believe that this strategy reveals 
which protein clusters determine the HSC’s fate. 
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