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ABSTRACT 

Objective: To date, the understanding of pediatric tumor genomics and how these genetic aberrations 
correlate with clinical outcome is lacking. Here, we report our experience with the next-generation 
sequencing (NGS) test program and discuss implications for the inclusion of molecular profiling into 
clinical pediatric oncology trials. We also aimed to explore studies on NGS in pediatric cancers and to 
quantify the variability of finding actionable mutations and the clinical implications. 
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Methods: We present a retrospective case series of all patients whose tumor tissue underwent NGS tests 
during treatment in our department. We also reviewed the literature and carried out a meta-analysis to 
explore studies on NGS in pediatric cancers. 

Results: In 35/37 (94%) patients, we found at least one genomic alteration (GA); mean number of GAs per 
patient was 2 (range, 0–67), while 164 GAs were detected. Only 3 (8%) patients received precision medicine 
due to their GAs for a mean of 9 months (range, 5–14 months). Four studies were included in the meta-
analysis. The pooled positive actionable mutation rate was 52% (95% CI 39%–66%), and the pooled rate of 
children who received precision medicine was 10% (95% CI 3%–20%). 

Conclusions: In children and young adults with high-risk, recurrent, or refractory malignancies, tumor 
profiling results have clinical implications, despite barriers to the use of matched precision therapy. 

KEY WORDS: Meta-analysis, NGS, pediatric oncology, precision, solid tumors 

 

INTRODUCTION 

The annual incidence of childhood cancers is 140–
160 de novo cases per million children aged 0–14 
years. Although survival rates for most childhood 
cancers have improved in recent decades, pediatric 
cancer is the leading cause of death by disease in 
children past infancy,1 and the prognosis of children 
with brain tumors, such as high-grade gliomas, 
brainstem tumors, and medulloblastomas, as well as 
metastatic sarcomas and neuroblastomas, continues 
to be poor.1 Prognosis is even more unfavorable with 
relapse, and standard guidelines for therapies are 
lacking. The growing ability to analyze the tumors 
and understand their development and progression 
opens new options for precision therapies using 
novel targeted substances. While most tumor cells 
harbor more than one tumor-propagating change 
within the different cell-signaling pathways,2 pro-
gressive or relapsed tumors often display additional 
molecular changes mediating resistance to standard 
treatment regimens.3 

The traditional approach of evidence-based med-
icine in clinical medicine relies on studies of patient 
cohorts defined by simple eligibility criteria that 
demonstrate an average effect of the intervention 
studied. This is in contrast to the “precision medi-
cine” approach, which is the process of integrating 
histological and molecular data aiming to find the 
most suitable treatment for the biological profile of 
the tumor.4 

Next-generation sequencing (NGS) tests have 
advanced rapidly in recent years and include DNA 
analyses, such as sequencing large numbers of genes 
(hundreds to thousands) in a single test. These tests 
can simultaneously detect genomic alterations, such 
as deletions, insertions, copy number alterations, 

translocations, and exome-wide base substitutions 
in all known cancer-related genes.5,6  

Comprehensive DNA sequencing studies have 
revealed important aspects of the pediatric cancer 
pathogenesis, and the implementation of precision 
cancer medicine in pediatric oncology faces unique 
challenges. Compared with adult cancers, pediatric 
cancers harbor far fewer genetic alterations.7 In 
general, pediatric cancer is comparatively rare, and 
most children are cured with conventional thera-
pies. In addition, regulations governing research in 
children make it difficult to obtain tumor samples 
for research purposes.8 At present, few precision 
therapies are available to target childhood cancers. 
Those that are most widely used consist of drugs 
originally developed for adults.9  

Ruth Rappaport Children’s Hospital is the main 
health provider for children with cancer from north-
ern Israel, accepting approximately 120 new pediat-
ric oncology patients per year, while in Israel the 
average survival rate at 5 years was 80.8% in 2003.10 
In 2013, our department began to assess the 
feasibility of integrating precision medicine into the 
care of children with relapsed and/or refractory can-
cer. The major tool in our program is the NGS test 
and trials to provide precision therapy in such cases, 
with referral to clinical trials or a compassionate use 
of new drugs. Our institute joined the Innovative 
Therapies for Children with Cancer program (ITCC) 
in Europe in 2016 with the aim of coordinating the 
delivery of new drug trials in our institute. 

The understanding of pediatric tumor genomics 
and how these genetic aberrations correlate with 
clinical outcome is lacking. We report our expe-
rience with our precision therapy program and 
consider the implications for the effective integra-
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tion of molecular profiling into clinical pediatric 
oncology. 

METHODS 

We report a retrospective case series of all patients 
whose tumor tissues underwent NGS tests during 
treatment in our department. We also reviewed the 
literature and carried out a meta-analysis to explore 
studies on NGS in pediatric cancers and quantify the 
variability of finding actionable mutations and the 
clinical implications. With the all-important term of 
“actionability” not uniformly defined, decisions are 
more often related to differences in the thresholds of 
evidence used to define “actionability” than to 
differences between sequencing technologies.11 

Case Series 

Children and young adults treated in our depart-
ment since 2013, with relapsed and/or solid tumors, 
were included in our case series. The pathology 
formalin-fixed paraffin-embedded (FFPE) slides 
were sent to Foundation Medicine Lab (CLIA Lab, 
Boston, MA, USA); DNA was isolated from the FFPE 
sections cut, and sequencing was performed for 
exons of 315–406 cancer-related genes and selected 
introns of ~30 genes to an average depth of >500×. 
Actionable genomic alterations (GA) were defined as 
those linked to targeted anti-cancer therapies ap-
proved or being evaluated in active registered 
clinical trials. 

Review and Meta-analysis  

In this review, we aimed to explore the literature 
regarding the finding of actionable (targeted) muta-
tions and, further on, the availability of providing 
precision treatment to children and young adults 
with solid cancers. We performed meta-analyses in 
order to estimate their variability and pooled effects. 

The electronic search strategy included the 
medical literature databases PubMed and Google 
scholar, using sets of key word combinations: “solid 
childhood cancers,” “refractory,” or “recurrence”; 
“pediatric oncology” AND “precision medicine”; 
“NGS” or “targeted therapy.” All reference lists from 
the main reports and relevant reviews were searched 
for additional eligible studies. 

Study inclusion criteria were: patients aged >0 
and <40 years, with refractory or recurrent solid 
tumors; type of sample: frozen or paraffin; tech-
nically successful tumor profiling tests; NGS tests; 

reported specified actionable genetic alterations 
criteria and number of positive results; and reported 
a targetable therapy following the NGS tests. 

The exclusion criteria were age 40 years and 
studies with exclusivity of lymphoproliferative can-
cers or brain tumors. We choose a cutoff age of 40 
years old because the limited sources of studies and 
the selected studies included both children and 
young adults. 

The outcome variables were: 

% 𝐴𝑐𝑡𝑖𝑜𝑛𝑎𝑏𝑙𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 

 
𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑏𝑙𝑒 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝐺𝑆 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(Equation 1) 

And: 

 

% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 

 
𝑁𝑜 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑁𝑜 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦
 

(Equation 2) 

The statistical analysis and graphical presenta-
tion were performed using StatsDirect Statistical 
Analysis Software version 3.1.14 (StatsDirect Ltd, 
Cambridge, UK). 

Heterogeneity of the studies was determined 
using Cochrane’s Q test of heterogeneity. Inconsis-
tency in the study results was assessed by I2, which 
describes the percentage of total variation across 
studies that is due to heterogeneity rather than sam-
ple error or by chance. When I2≥50%, we postulated 
that there was more than moderate inconsistency. 
The random effects model was chosen if Cochrane’s 
Q test was P<0.1 or I2≥50%. Otherwise, the fixed 
effects model was selected. The funnel plot and the 
Egger test were used to examine publication bias 
(P<0.1 considered as statistically asymmetric funnel 
plot). 

RESULTS 

We collected data on 37 patients (Table 1). Median 
age at the time of the NGS tests was 11.3 years (range, 
0.9–20 years). Malignancies included neuroblasto-
ma (n=7), brain tumors (n=7), osteosarcoma (n=5), 
rhabdomyosarcoma (n=4), Wilms’s tumor (n=3), 
Ewing sarcoma (n=3), and others (n=8). In 35/37 
(94%) patients, we found at least one genomic 
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Table 1. Review of NGS Tests in Our Institute. 

Patient 
Age (y) 

Diagnosis 
Genomic 

Alterations 
Potential 
Therapies 

Potential 
Clinical 
Trials 

VUS 
Precision 
Therapy 

(mo) 

Biological 
Therapy 

(mo) 

Germline 
Patient 
Status 

10;8 Brain 2 3 4 3 0 0 N/A DOD 

11;3 Brain 5 2 7 6 0 0 Y AWD 

17 Brain 2 4 4 4 8 0 N/A DOD 

15 Brain 5 0 4 5 0 0 N/A AWD 

6;5 Brain 3 2 4 0 14 0 Y DOD 

7;6 Brain 4 2 8 12 0 0 N/A DOD 

8;6 Brain 1 3 2 6 0 0 N/A AWD 

15;2 Colon carcinoma 4 2 11 7 0 0 Suspected DOD 

16;8 Colon carcinoma 67 14 39 52 0 0 Y AWD 

14;11 Ewing 1 0 0 8 0 0 N/A DOD 

18;1 Ewing 4 0 0 3 0 0 N/A DOD 

19;2 Ewing 3 2 4 7 0 0 Suspected AWD 

13 Germ cell 3 8 7 5 0 0 Suspected NED 

3 Hepatoblastoma 1 0 10 8 0 5 N/A AWD 

13;7 Neuroblastoma 3 5 5 15 0 0 N/A DOD 

10 Neuroblastoma 1 0 0 10 0 0 N/A AWD 

9 Neuroblastoma 0 0 0 9 0 0 N/A DOD 

7;8 Neuroblastoma 2 2 8 14 5 0 N DOD 

1;8 Neuroblastoma 1 0 7 4 0 0 N/A NED 

1;4 Neuroblastoma 6 0 0 12 0 0 N/A AWD 

2;7 Neuroblastoma 2 0 4 17 0 0 N/A DOD 

20 Osteosarcoma 8 4 15 9 0 6 Y DOD 

15.3 Osteosarcoma 5 2 6 10 0 0 N/A DOD 

13;3 Osteosarcoma 7 0 8 10 0 5 N/A DOD 

12;9 Osteosarcoma 4 0 0 16 0 0 N/A DOD 

15;5 Osteosarcoma 1 0 0 11 0 0 Suspected AWD 

17;4 Other 1 0 0 10 0 0 N/A AWD 

1;6 Other 1 1 0 9 0 0 N/A DOD 

12;2 Other 0 0 0 12 0 0 N/A AWD 

0;9 Rhabdoid 1 0 6 7 0 0 N/A NED 

12;5 RMS 2 0 4 10 0 4 N/A DOD 

19;6 RMS 3 0 0 13 0 7 N/A AWD 

4;9 RMS 2 0 0 12 0 8 Suspected DOD 

9 RMS 3 2 5 13 0 6 Suspected DOD 

5 Wilms’s 1 0 4 7 0 0 N/A NED 

6;4 Wilms’s 2 0 2 9 0 0 N/A DOD 

6;4 Wilms’s 3 0 2 9 0 4 N/A DOD 

AWD, alive with disease; DOD, dead of disease; mo, months of therapy; N, non-approved; N/A, not available; 

NED, no evidence of disease; RMS, rhabdomyosarcoma; Suspected, in case of positive family history or 

suspected mutation; Y, yes, approved. 
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alteration (GA), and the mean number of GAs per 
patient was 2 (range, 0–67), while a total of 164 GAs 
were detected. There were 10.1 variants of unknown 
significance (VUS) on average, and the reports in-
cluded an average of 1.5 therapy recommendations 
per patient (range, 0–14) and an average of 4.8 clin-
ical trials per patient (range, 0–39). Overall, only 3 
(8%) patients received precision medicine due to 
their GAs for a mean of 9 months (range, 5–14 
months), while 8 patients received an unspecified 
biological treatment, such as mTOR inhibitor or 
multi-kinase inhibitors, for an average of 5.6 months 
(range, 4–8 months).  

A total of 214 records were identified as poten-
tially eligible for the meta-analysis, and only four 
studies were included (Figure 1, Table 2). 

The first objective (Figure 2) was to calculate the 
percent of positive actionable GAs in the total popu-
lation. Heterogeneity was found (Cochrane Q=19.83 
[df=3], P=0.0002), I2 (inconsistency)=84.9% (95% 
CI 50.4%–92.3%). The random effects model was 
selected, and the pooled positive actionable muta-
tion rate was 52% (95% CI 39%–66%). No 
publication bias was found. 

The second objective (Figure 3) was to calculate 
the clinical implications of the NGS tests (how many 
patients received precision medicine) in the total 
population. Heterogeneity was found (Cochrane 
Q=21.97 [df=3], P<0.000), I2 (inconsistency)= 
86.3% (95% CI 58.5%–92.9%). The random effects 
model was selected, and the pooled precision medi-
cine rate was 10% (95% CI 3%–20%). The funnel 
plot (Figure 4) suggests a tendency toward publica-
tion bias where more studies reported high positive 
rates of precision medicine (compared to the pooled 
rate). According to the Egger test, asymmetry was 
found (P=0.021). 

DISCUSSION 

In children and young adults with recurrent or 
refractory solid tumors, tumor-profiling results can 
have clinical implications, but there are barriers to 
finding or adapting matched precision therapy. 
Despite our improved knowledge of genetic altera-
tions in pediatric cancers, precision medicine remains 
unavailable for the majority of cases. A small num-
ber of early-phase pediatric trials include patients 
whose cancer harbors genetic alterations, including 
ALK genomic alterations, using ALK inhibitors, and 
BRAF V6OO mutant tumors, using BRAF or MEK 
inhibitors.15 For example, we published a case report 
on successful response to precision therapy in a 
child with aggressive meningioma who was BRAF 
V6OOE-positive.16 But, in our institute, when we 
suspect a specific driver alteration in a specific 
disease—such as BRAF fusion alteration in pilocytic 

Table 2. Meta-analysis Sources. 

Source Study Name 
Median Age 

(years) 
Publication 

Year 
Sample 

Size 
Methods 

Worst et al.12 The INFORM Pilot Study 13 2016 57 WES, WGS 

Harris et al.8 iCat Study 13.4 2016 89 Targeted NGS, CGH 

Parsons et al.13  7.4 2016 121 WES 

Harttrampf et al.14 MOSCATO-01 10.9 2017 69 Targeted NGS, WES, CGH 

CGH, comparative genomic hybridization; NGS, next-generation sequencing; WES, whole-exome sequencing; 

WGS, whole-genome sequencing. 

 

Figure 1. Flow Chart of Studies Included in the Meta-

analysis. 

214 Records Identified 
as Potentially  Eligible

197 Abstracts Excluded:

• 67 Reviews
• 130 Not Relevant

17 Full Studies 
Reviewed

4 Studies Considered in 
the Meta-analysis

13 Studies Excluded:

• 3 Brain tumors only
• 2 No original data
• 8 Included leukemia/ 

lymphoma
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astrocytoma17—we do not perform a NGS test, but a 
specific fluorescence in situ hybridization test. In 
adults with lower-grade gliomas, NGS tests are used 
as a modality for classifying them according to the 
World Health Organization’s 2016 diagnostic 
scheme.18  

In the meta-analysis, potentially actionable alter-
ations were identified in 52% of patients, of which 
only 10% subsequently received matched therapy, 
whereas, in our experience, 94% of patients receive 
NGS reports with potentially actionable alterations 
and only 8% of them receive precision therapy. We 

 

Figure 2. Combined Proportion (Using Random Effect) of % Actionable Alterations in the NGS Tests. 
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Figure 3. Combined Proportion (Using Random Effect) of % of Patients Who Received Precision Medicine in the 

Studies. 
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can assume that the high rate of positive tests in our 
institute is due to our process of finding high pretest 
probability, as we discuss each case and check geno-
mic databases (such as the Foundation Medicine 
pediatric database19). 

These results prove the feasibility of incorpor-
ating NGS tests into pediatric oncology practice. 
Many potentially actionable genetic alterations were 
detected in a small fraction of patients, meaning that 
effective pediatric precision oncology therapeutic 
protocols will require access to a wide range of 
targeted agents. Precision therapy is not advised if 
there is a lack of an available matched drug or any 
inability to enroll in a clinical trial. These results 
emphasize the need for more clinical trials of 
targeted therapies in children. 

In addition, future efforts will need to relate intra-
tumoral heterogeneity, as well as other aspects, such 
as genetic alterations between primary tumors and 
relapsed tumors. As technologies improve in the 
future, one will be able to explore patterns of 
molecular heterogeneity on the single-cell level to 
determine how such heterogeneity affects tumor 
biology and the efficacy of the treatment.6 

With NGS testing come many ethical questions 
and concerns, particularly when testing involves 
germline tissues. In this study, we focused on so-
matic NGS testing, where there are fewer ethical 
concerns compared to germline tests. Next-
generation sequencing testing may also reveal 
genetic deviations that are not well understood; 
these deviations are known as “variants of uncertain 
significance” (VUS). It can be difficult for families to 
comprehend that sophisticated NGS tests may 
actually yield uncertain information, and continued 
advances in sequencing technologies will, at times, 
outpace our ability to address the ethical issues 
surrounding such testing.20 

There are some study limitations, e.g. hetero-
geneity of ages and cancer types. There are different 
types of genetic tests; some of the tests were per-
formed from the initial samples, and some were 
taken from the recurrence of the disease. Technical 
difficulties are well known with a high rate of NGS 
test failures (depending on tumor cell percentages in 
the specimen, cancer subtype, NGS technique, etc.). 

Identification of genetic alterations in childhood 
cancers with the use of CLIA Lab-certified clinical 

 

Figure 4. Funnel Plot for the Second Objective: There Is Tendency towards Publication Bias Where More Studies 

Reported a High Positive Rate of Precision Medicine (Compared to the Pooled Rate). 
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NGS is feasible. Moreover, finding precision thera-
pies is complicated, and innovative means of bridg-
ing this gap are sorely needed.21 As shown in our 
case series, only a small proportion of children with 
refractory and/or relapsed solid tumors received a 
precision therapy. From our relevant patients some 
parents did not want these tests to be performed, 
some children rapidly deteriorated, and we also had 
a few tests that technically failed. When we found a 
driver alteration and a possible treatment, we 
looked for a relevant clinical trial or a compas-
sionate program.  

The goal of contemporary pediatric oncology is to 
achieve better cure rates with the aid of a compre-
hensive therapeutic approach that integrates drugs 
targeting cancer vulnerabilities with inhibitors of pro-
cesses driven by genomic and/or epigenetic altera-
tions, and also involves immune responses.2,22 Drug 
development in pediatric oncology depends on the 
availability of drugs developed for adults, rather 
than on the basis of the drug mechanism of action 
(MoA); therefore, there is limited access to such 
drugs. For this reason, we joined the Innovative 
Therapies for Children with Cancer (ITCC) Consorti-
um which chooses a MoA model of drug develop-
ment, as innovative and rationally designed early-
phase trials will promote the development of new 
drugs for children and adolescents.23 Continued 
drug development, discovery sequencing, and bio-
logic investigation are likely to expand opportunities 
for precision medicine in pediatric oncology. 
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