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ABSTRACT 

Objective: To compare the reported accuracy and sensitivity of the various modalities used to diagnose 
autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising 
methods for early diagnosis. 
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Methods: The Medline scientific literature database was searched to identify publications assessing 
potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative 
markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, 
specificity, area under the curve, and overall agreement were summarized and analyzed to determine 
weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. 

Results: Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based 
followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall 
agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity 
provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) 
had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agree-
ments in the range of 73%–80%. 

Conclusions: Each modality provided for diagnostic accuracy and specificity similar or slightly higher 
than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. 
Further studies are required to identify the most predictive markers within each modality and to evaluate 
biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to 
determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early 
intervention. 

KEY WORDS: Autism spectrum disorder, biomarkers, gene expression, magnetic resonance imaging, 
meta-analysis, proteomics 

 

 

INTRODUCTION 

Autism spectrum disorders (ASD) were first charac-
terized clinically in 1943 by Kanner1 and further in 
1979 by Wing and Gould2 as a spectrum of impaired 
social interactions, restricted communications skills, 
and unusual repetitive behaviors. The American 
Psychological Association’s Diagnostic and Statisti-
cal Manual of Mental Disorders, Fifth Edition 
(DSM-5) recently consolidated the various subtypes 
of pervasive developmental disorders (PDD) into one 
category called ASD and shifted the evaluation from 
three domains (social deficits, communication defi-
cits, and restricted repetitive behaviors [RRB]) to 
two (social-communication impairments and RRB).3 

Several behavior assessment-based diagnostic 
tests have been used for ASD, including the Autism 
Diagnostic Observation Schedule (ADOS).4 A meta-
analysis involving ADOS evaluations of >4,000 
children reported an overall diagnostic accuracy of 
52%, with sensitivity scores of 67%–97% (pooled 
data: 91%) and specificity scores of 56%–94% (pooled 
data: 73%).5 The Autism Diagnostic Interview–
Revised (ADI-R) is a structured interview of the par-
ent, differing from the direct observation of the child 
performed with the ADOS evaluation.6 In addition, 
clinicians use the Childhood Autism Rating Scale 
(CARS) to rate the child’s behavior on 15 subscales;7 
parental reports can also be considered. 

Since these behavioral tests are subjective and 
time-consuming, require professional staff to be 
administered, and can only be used from age 3 years 
once the child is old enough to communicate, re-
searchers have sought other ways of diagnosing 
ASD.8 Biomarkers are expected to be more objective, 
should enable earlier diagnosis, and may provide 
clues to the underlying etiology of ASD. In addition, 
providing positive diagnosis in younger toddlers may 
enable earlier initiation of therapy with consequent-
ly higher probability of successful treatment given 
decreasing brain plasticity with age in the develop-
ing child. The primary modalities harnessed to 
identify novel ASD biomarkers have been molecular, 
proteomic, metabolomic, neurochemical, radiologic, 
and electrophysiologic, with transcriptomic analyses 
also having been performed.9 

This study aimed to compare the reported accu-
racy and sensitivity of the various modalities used to 
diagnose ASD. This should help focus further bio-
marker research on the most promising methods for 
early diagnosis. 

METHODS 

This analysis aimed to adhere to the Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, to ensure compre-
hensive and transparent reporting. 
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Search Strategy 

Independent queries using medical subject headings 
(MeSH) and keywords were performed to identify all 
primary research articles from the PubMed database 
that evaluated sensitivity, specificity, and accuracy 
of biomarkers for diagnosing ASD within six 
predefined modalities (protein, metabolic, genetic, 
electroencephalography [EEG], magnetic resonance 
imaging [MRI], positron emission tomography 
[PET]) (Supplement). Each search term included 
autism/ASD, a diagnostic technique, and a sensi-
tivity/specificity classifier. To distinguish between 
protein and metabolic papers, all papers dealing 
with hormones, urine, mass spectrophotometry, me-
tabolites, or peptides were assigned to the metabolic 
modality, while all papers dealing with cytokines, 
chemokines, or other proteins circulating in the 
blood were assigned to the protein modality.  

Data Sources and Data Extraction 

The search terms were entered into Ovid MEDLINE 
(1946 to January 2017) without limits, and 866 
articles were returned. Reviews and reference lists 
were cross-checked for studies that the search terms 
might have missed. 

Screening 

Two independent reviewers (AA and JR) examined 
study titles. From review of the abstracts, potentially 
eligible full-text articles were retrieved with relevant 
appendices and supplementary information. 

Eligibility 

Full-text articles were reviewed against eligibility 
criteria. Inclusion criteria were: (a) articles after 
1994, written in English; (b) inclusion of a typically 
developing (TD) control group (unless it was a 
review paper); (c) inclusion of a study group with 
children diagnosed with ASD by a behavioral 
diagnostic test or by DSM criteria (unless it was a re-
view paper); and (d) assessment for ASD biomarkers 
using one of the six predefined modalities. Exclusion 
criteria were: (a) studies that compared ASD with 
other comorbidities; (b) studies that tested only risk 
factors of ASD; (c) studies that had a therapeutic 
component; (d) non-clinical studies; and (e) studies 
without statistical parameters of interest (sensitiv-
ity, specificity, accuracy, and/or area under the 
curve [AUC]). All publications meeting all inclusion 
criteria and none of the exclusion criteria were in-
cluded in the analysis.  

Data Extraction 

For each eligible article, the following data were 
extracted and validated independently by two re-
searchers (AA and JR): first author’s surname, year 
of publication, diagnostic modality, number of ASD 
subjects, number of controls, age-matched (yes or 
no), sex-matched (yes or no), accuracy (% correctly 
identified), AUC, sensitivity, and specificity. The 
standard error of the AUC was calculated based on 
the AUC point estimate and sample size by the meth-
od of Hanley and McNeil.10 Several papers included 
the evaluation of multiple markers assessed on the 
same group of subjects; these were included in the 
meta-analysis individually and analyzed indepen-
dently of each other. 

Data Analysis 

A separate statistical analysis of each of the parame-
ters was performed for each of the six predefined 
modalities. Meta-analyses of sensitivity, specificity, 
AUC, and accuracy were performed using MedCalc 
Statistical Software version 17.9.7 (MedCalc Soft-
ware bvba, Ostend, Belgium). The weighted sum-
mary sensitivity, specificity, accuracy (arc-sine square 
root transformation), and AUC with 95% confidence 
intervals (CIs) were calculated using a random-effects 
model.11 Inter-study heterogeneity was assessed 
using the I2 statistic with 95% CI, which describes 
the percent variability in point estimate due to het-
erogeneity rather than sampling error. Presented are 
the weighted summaries of each tested parameter, 
alongside the weighted summary of the ADOS test, 
as reported in a published meta-analysis.5 The con-
tribution of each individual publication to the 
weighted summary of each measured parameter is 
presented by modality. 

RESULTS 

The literature search identified 866 papers (Figure 
1), of which 211 were duplicates. The abstracts of the 
remaining 655 papers were screened for relevance; 
29 were excluded. Thus, 626 full-text papers were 
assessed for eligibility based on the above criteria. 
Review of these papers identified 86 additional 
papers which were also further appraised. Of these 
712 publications in total, 640 failed to meet the 
inclusion criteria, primarily due to lack of an ASD 
group or insufficient statistical data. The 72 papers 
that met the criteria were subdivided by the 
diagnostic modality reported in the study. Four 
papers included data belonging to two diagnostic 

https://www.rmmj.org.il/userimages/957/1/PublishFiles/980ArticleAM.pdf
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modalities.12–15 Since only one PET study met the 
eligibility criteria, this modality was excluded from 
the analysis. Cohort sizes varied from 6 to 554 
subjects.  

Genetic studies (n=14)13,14,16-27 applied polymerase 
chain reaction (PCR) genotyping, mRNA/miRNA 
microarray, or spectrophotometric tools. Magnetic 
resonance imaging (MRI) studies (n=22),13,14,21,28–46 
which included functional MRI (fMRI), resting state 
fMRI (rs-fMRI), structural MRI (sMRI), and stan-
dard MRI studies, sought out ASD diagnostic mark-
ers by analyzing fast spin echo (FSE) T2-weighted, 
fluid-attenuated inversion recovery (FLAIR), 

diffusion-weighted imaging (DWI), spin echo (SE) 
T1-weighted sequences, and single voxel 1H MR 
spectrum. Volumetric measurements for different 
areas of the brain were assessed. Mass univariate 
methods such as voxel-based morphometry (VBM) 
and whole-brain classification approach employing 
a support vector machine (SVM) were used. In the 
21 metabolic studies,12,15,47–65 high-performance liquid 
chromatography (HPLC), liquid chromatography–
high resolution mass spectrometry (LC-HRMS), gas 
chromatography, nuclear magnetic resonance (NMR), 
as well as capillary electrophoresis with ultraviolet/ 
visible spectroscopy (UV-Vis) were used to identify 
markers. The 12 studies assessing the diagnostic 
potential of various protein markers12,15,66–75 covered 
>60 proteins or protein combinations using various 
microarray kits/chips or enzyme-linked immuno-
sorbent assay (ELISA). Six studies focused on EEG 
analyses for ASD diagnosis.76–81 

Overall, protein-based followed by metabolite-
based studies provided the highest diagnostic accu-
racy, each with an overall agreement of 83.3% and 
AUC of sensitivity (true-positive rates) versus speci-
ficity (false-positive rates) of 89.5% and 88.3%, 
respectively (Table 1, Figures 2–5). Sensitivity pro-
vided by protein markers (85.5%) and metabolite 
markers (84.7%) was highest. The other modalities 
showed similar degrees of sensitivity, specificity, 
and overall agreements, which all fell within the 
range of 73%–80%.  

DISCUSSION 

As the first reported meta-analysis of ASD biomark-
ers, the current study included 71 papers with co-
horts of up to 554 ASD subjects.77 This study sug-
gests that all five major bio-diagnostic modalities 
provide similar diagnostic objective accuracy for 
ASD compared to the subjective ADOS. The protein- 
and metabolite-based tests were found to provide 
for the highest diagnostic accuracy; combining mo-
dalities might further improve diagnostic accuracy.  

The sensitivities of the various studied modalities 
were 73.6%–85.5%, with protein markers showing 
the highest degree of sensitivity. The specificities 
ranged from 73.0% (MRI) to 85.9% (metabolic). 
Accuracy, assessed by overall agreement and AUC, 
was 73.4%–83.2% and 79.0%–89.5%, respectively, 
and highest for protein-based biomarkers. Taken 
together, all analyzed modalities provided for higher 
diagnostic accuracy and specificity compared to the 
gold-standard ADOS test.5 While pooled ADOS

 

Figure 1. PRISMA Flow Diagram of the Phases of the 

Literature Search. 
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diagnostic sensitivity was higher than for biomarker 
modalities, protein-based diagnoses provided for 
sensitivity within the same range. This meta-
analysis supports efforts to search for/use new ob-
jective modalities beyond psychological tests for the 
diagnosis of ASD. Moreover, quantitative objective 
biomarkers identified at ages when psychological 
tests cannot yet be employed should enable earlier-
stage intervention, which is projected to be more 
efficient due to greater brain plasticity. These diag-

nostic efforts may enable the subdivision of ASD 
into subgroups and provide useful therapeutic tar-
gets, which have significant long-term therapeutic 
implications. 

Further studies will be necessary to determine 
which modalities serve better as screening versus 
confirmatory testing. Subgroups of ASD might be 
defined by these tests, suggesting different thera-
peutic modalities as diagnostic targets for different 

Table 1. Weighted ASD Diagnostic Power for Each Evaluated Modality. 

Modality 
Sensitivity 

(%) 
Specificity 

(%) 

Overall 
Agreement 

(%) 

Area 
under 
Curve 

(AUC) (%) 

Genetic 

Pool 79.3 73.1 76.7 79.5 

Range 24.3–100 41.8–88.2 62.7–90.4 64.8–92.0 

95% CI 73.3–84.7 69.6–76.5 73.8–79.5 77.0–82.0 

I2 87.5 56.9 70.8 52.5 

MRI 

Pool 73.6 73.0 73.5 79 

Range 43.7–94.8 45.4–100 57.9–95.7 58.0–99.5 

95% CI 71.8–76.0 70.0–76.0 71.0–75.9 75.0–83.0 

I2 78.1 84.4 89.1 96.4 

Metabolic 

Pool 74.6 85.9 83.3 88.3 

Range 0–100 15.0–100 48.7–100 59.2–99.9 

95% CI 66.8–81.6 82.7–88.7 80.3–86.1 86.0–91.0 

I2 97.7 87.1 ND 92.2 

Protein 

Pool 85.5 84.7 83.8 89.5 

Range 50–100 38.9–100 62.8–100 57.0–99.9 

95% CI 80.0–90.3 78.6–90 81.0–86.5 86.0–93.0 

I2 87.3 89.2 73 90.1 

EEG 

Pool 79.9 80.4 79.9 ND 

Range 57.6–90.9 64.5–100 70.5–87.4 ND 

95% CI 70.5–87.9 73.3–86.6 73.5–85.5 ND 

I2 83.4 79.5 85.2 ND 

ND, not done. 
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Figure 2. Weighted Sensitivity of Appraised Studies. 

The weighted sensitivity with 95% CIs was calculated using a random-effects model. Also shown is the weighted 

sensitivity of the ADOS test, as determined in a meta-analysis of seven cross-sectional studies assessing >4,000 

children.5 

 
Figure 3. Weighted Specificity of Appraised Studies. 

The weighted specificity with 95% CIs was calculated using a random-effects model. Also shown is the weighted 

sensitivity of the ADOS test, as determined in a meta-analysis of seven cross-sectional studies assessing >4,000 

children.5 
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Figure 4. Weighted Overall Agreement of Appraised Studies. 

The weighted overall agreement with 95% CIs was calculated using a random-effects model. 

 

Figure 5. Weighted AUC of Appraised Studies. 

The weighted AUC with 95% CIs were calculated using a random-effects model. 



 

Biomarkers and Autism—a Meta-analysis 
 

 

Rambam Maimonides Medical Journal 8 October 2019  Volume 10  Issue 4  e0021 
 

such subgroups. Attempts to find patterns linking 
the most accurate biomarkers in each modality may 
identify common pathways and draw the ASD com-
munity closer to developing therapeutics, where 
these diagnostic markers will serve with psychologi-
cal tests as objective theragnostic monitoring tools.  

There were several limitations in this meta-
analysis. There was a high level of heterogeneity, as 
expected given both the clinical heterogeneity be-
tween the included papers, with variations in the 
diagnosis and definition of ASD, and the method-
ologies across studies. In addition, in all assessed 
publications, evaluation of the diagnostic value of 
the biomarker of interest used typically developing 
controls as a comparator group, which may falsely 
elevate the diagnostic capacity of the test as com-
pared to its performance in marginal cases with 
behaviors consistent with ASD. Comparing across 
modalities was not uniformly well-controlled. In 
addition, certain modalities were documented in a 
very limited number of papers. Furthermore, many 
papers were excluded due to insufficient statistical 
data, reinforcing the importance of proper study 
design and execution in future analyses of ASD 
biomarkers.  

In conclusion, this study suggests that five major 
bio-diagnostic modalities provide a higher level of 
accuracy for objective diagnosis of ASD compared to 
ADOS, the gold-standard test. Thus, it is justified to 
include objective biological tests in the diagnosis of 
ASD to develop and monitor future biological ther-
apies. Further studies looking at each modality in 
higher resolution to fine-tune the findings are still 
necessary. Objective biomarkers together with cur-
rent psychological evaluations might enable im-
proved diagnosis and monitoring. 
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