Search

Results for: xxl vidao pro

  • Systems Biology and P4 Medicine: Past, Present, and Future

    Studying complex biological systems in a holistic rather than a “one gene or one protein” at a time approach requires the concerted effort of scientists from a wide variety of disciplines. The Institute for Systems Biology (ISB) has seamlessly integrated these disparate fields to create a cross-disciplinary platform and culture in which “biology drives technology drives computation.” To achieve this platform/culture, it has been necessary for cross-disciplinary ISB scientists to learn one another’s languages and work together effectively in teams. The focus of this “systems” approach on disease has led to a discipline denoted systems medicine. The advent of technological breakthroughs in the fields of genomics, proteomics, and, indeed, the other “omics” is catalyzing striking advances in systems medicine that have and are transforming diagnostic and therapeutic strategies. Systems medicine has united genomics and genetics through family genomics to more readily identify disease genes. It has made blood a window into health and disease. It is leading to the stratification of diseases (division into discrete subtypes) for proper impedance match against drugs and the stratification of patients into subgroups that respond to environmental challenges in a similar manner (e.g. response to drugs, response to toxins, etc.). The convergence of patient-activated social networks, big data and their analytics, and systems medicine has led to a P4 medicine that is predictive, preventive, personalized, and participatory. Medicine will focus on each individual. It will become proactive in nature. It will increasingly focus on wellness rather than disease. For example, in 10 years each patient will be surrounded by a virtual cloud of billions of data points, and we will have the tools to reduce this enormous data dimensionality into simple hypotheses about how to optimize wellness and avoid disease for each individual. P4 medicine will be able to detect and treat perturbations in healthy individuals long before disease symptoms appear, thus optimizing the wellness of individuals and avoiding disease. P4 medicine will 1) improve health care, 2) reduce the cost of health care, and 3) stimulate innovation and new company creation. Health care is not the only subject that can benefit from such integrative, cross-disciplinary, and systems-driven platforms and cultures. Many other challenges plaguing our planet, such as energy, environment, nutrition, and agriculture can be transformed by using such an integrated and systems-driven approach.
  • Lean Management – the Journey from Toyota to Healthcare

    The evolution of production systems is tightly linked to the story of Toyota Motor Company (TMC) that has its roots around 1918. The term “lean” was coined in 1990 following the exploration of the Toyota model that led to the “transference” thesis sustaining the concept that manufacturing problems and technologies are universal problems faced by management and that these concepts can be emulated in non-Japanese enterprises. Lean is a multi-faceted concept and requires organizations to exert effort along several dimensions simultaneously; some consider a successful implementation either achieving major strategic components of lean, implementing practices to support operational aspects, or providing evidence that the improvements are sustainable in the long term. The article explores challenges and opportunities faced by organizations that intend incorporating lean management principles and presents the specific context of the healthcare industry. Finally, the concepts of “essential few” and customer value are illustrated through a simple example of process change following lean principles, which was implemented in a dental school in the United States.
  • Viewpoint: Personalizing Statin Therapy

    Cardiovascular disease (CVD), associated with vascular atherosclerosis, is the major cause of death in Western societies. Current risk estimation tools, such as Framingham Risk Score (FRS), based on evaluation of multiple standard risk factors, are limited in assessment of individual risk. The majority (about 70%) of the general population is classified as low FRS where the individual risk for CVD is often underestimated but, on the other hand, cholesterol lowering with statin is often excessively administered. Adverse effects of statin therapy, such as muscle pain, affect a large proportion of the treated patients and have a significant influence on their quality of life. Coronary artery calcification (CAC), as assessed by computed tomography, carotid artery intima-media thickness (CIMT), and especially presence of plaques as assessed by B-mode ultrasound are directly correlated with increased risk for cardiovascular events and provide accurate and relevant information for individual risk assessment. Absence of vascular pathology as assessed by these imaging methods has a very high negative predictive value and therefore could be used as a method to reduce significantly the number of subjects who, in our opinion, would not benefit from statins and only suffer from their side-effects. In summary, we suggest that in very-low-risk subjects, with the exception of subjects with low FRS with a family history of coronary artery disease (CAD) at young age, if vascular imaging shows no CAC or normal CIMT without plaques, statin treatment need not be administered.
  • Mitral Transcatheter Technologies

    Mitral valve regurgitation (MR) is the most prevalent valvular heart disease in the community, its prevalence increasing along with population aging and heart failure. While surgery remains the gold standard treatment in low-risk patients with degenerative MR, in high-risk patients and in those with functional MR, transcatheter procedures are emerging as an alternative therapeutic option. MitraClip is the device with the largest clinical experience to-date, as it offers sustained clinical benefit in selected patients. Further to MitraClip implantation, several additional approaches are developing, to better match with the extreme variability of mitral valve disease. Not only repair is evolving, initial steps towards percutaneous mitral valve implantation have already been undertaken and initial clinical experience has just started.
  • Pomegranate for Your Cardiovascular Health

    Pomegranate is a source of some very potent antioxidants (tannins, anthocyanins) which are considered to be also potent anti-atherogenic agents. The combination of the above unique various types of pomegranate polyphenols provides a much wider spectrum of action against several types of free radicals. Indeed, pomegranate is superior in comparison to other antioxidants in protecting low-density lipoprotein (LDL, “the bad cholesterol”) and high-density lipoprotein (HDL, “the good cholesterol”) from oxidation, and as a result, it attenuates atherosclerosis development and its consequent cardiovascular events. Pomegranate antioxidants are not free, but are attached to the pomegranate sugars, and hence were shown to be beneficial even in diabetic patients. Furthermore, pomegranate antioxidants are unique in their ability to increase the activity of the HDL-associated paraoxonase 1 (PON1), which breaks down harmful oxidized lipids in lipoproteins, in macrophages, and in atherosclerotic plaques. Finally, unique pomegranate antioxidants beneficially decrease blood pressure. All the above beneficial characteristics make the pomegranate a uniquely healthy fruit.
  • Rembrandt’s Jewish Physician—Dr Ephraim Bueno (1599–1665): A Brief Medical History

    Medicine in the Middle Ages was, and ever since remained, one of the main preoccupations of the professionally restricted Jews. One of the medical dynasties on the Iberian peninsula was the Bueno (Bonus) family. Following the expulsion of the Jews from Spain and their spread in Europe, these Iberian physicians became successful everywhere—just as the Buenos were in the Netherlands.
  • High Technology in Medicine: Lessons from Cardiovascular Innovations and Future Perspective

    Four decades of innovations in the field of interventional cardiology are presented as an example for the great growth of high technology in medicine, sidebyside with the development of general technology and science. The field of percutaneous coronary intervention (PCI) was enabled by the development of X-ray systems,allowing us to view the pathology,and was critically dependent on courageous and imaginative physicians and scientists who developed percutaneous transluminal coronary angioplasty (PTCA), stents, and transarterial aortic valve replacement (TAVR). Today, outstanding research continues to progress, with stem cell research and IPC technologiespresenting new challenges and yet taller mountains to climb. The rapid development we have witnessed was due to tight collaborations between clinical and academic institutions and industry. The combination of all these elements, with a proper mechanism to handle conflict of interest,is an essential linkage for any progress in this field. We will continue to see exponential growth of innovations and must be prepared with appropriate bodies to encourage such developments and to provide early-stage funding and support for novel ideas.
  • The Importance of Functional Tests in Personalized Medicine

    Cardiovascular disease is the most prevalent disease mainly in the Western society and becoming the leading cause of death worldwide. Standard methods by which health care providers screen for cardiovascular disease have only minimally reduced the burden of disease while exponentially increasing costs. As such, more specific and individualized methods for functionally assessing cardiovascular threats are needed to identify properly those at greatest risk, and appropriately treat these patients so as to avoid a fate such as heart attack, stroke, or death. Currently, endothelial function testing—in both the coronary and peripheral circulation—is well-established as being associated with the disease process and future cardiovascular events. Improving such testing can lead to a reduction in the risk of future events. Combining this functional assessment of vascular fitness with other, more personalized, testing methods should serve to identify those at the greatest risk of cardiovascular disease earlier and subsequently reduce the affliction of such diseases worldwide.
  • The Surgical Treatment for Atrial Fibrillation: Ablation Technology and Surgical Approaches

    The Cox maze procedure developed originally in 1987 by Dr James Cox has evolved from a “cut and sew” surgical procedure, where the maze was applied using multiple surgical cuts, to an extensive use of surgical ablation technology where ablation lesions are placed with alternative energy sources (radiofrequency, cryothermy, microwave, and high-frequency ultrasound). Furthermore, the procedure has changed from a median sternotomy approach only to one that can be performed minimally invasively and robotically. The purpose of this paper is to review the current available technology for the ablation of atrial fibrillation as well as the different procedural approaches for the surgical ablation of atrial fibrillation.
  • New Technologies and Hybrid Surgery for Atrial Fibrillation

    The Cox maze III and Cox maze IV procedures are surgical solutions for the treatment of symptomatic stand-alone atrial fibrillation. Despite their proven efficacy, these procedures have not gained widespread acceptance because of the invasiveness, complexity, and technical difficulty. Endocardial pulmonary vein isolation is the cornerstone of percutaneous catheter ablation for atrial fibrillation. It is currently accepted as an invasive therapy, if rhythm control has failed using antiarrhythmic drugs or electrical cardioversions. Pulmonary vein isolation is reported to be effective in 60%–85% of patients with paroxysmal atrial fibrillation and in 30%–50% of patients with persistent atrial fibrillation. A second or third ablation is often necessary to achieve these results, and complications may occur in up to 6% of patients. Surgical treatment of atrial fibrillation has seen important improvements in the last decade. New technologies have simplified creation of transmural lesions on the beating heart through a less-invasive, thoracoscopic procedure. This allows for pulmonary vein isolation, isolation of the posterior wall, and left atrial appendage exclusion—usually combined with ganglionic plexi evaluation and destruction. Nonethe¬less, it is still uncertain whether these procedures are effective in restoring permanent sinus rhythm since transmurality of a lesion set cannot be guaranteed with current ablation catheters on the beating heart. In an attempt to limit the shortcomings of an endo- or an epicardial technique, a hybrid approach has recently been introduced. This approach is based on a close collaboration between the surgeon and the electrophysiologist, employing a patient-tailored procedure which is adapted to the origin of the patient’s atrial fibrillation and takes into consideration triggers and substrate. Using a mono- or bilateral energy source, a thoracoscopic epicardial approach is combined with a percutaneous endocardial ablation in a single-step or in a sequential-step procedure. This article provides our experience and an overview of the current knowledge in the hybrid treatment of stand-alone atrial fibrillation.