Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Aim: The aim of this study was to assess the density of the segmental branches of the middle cerebral artery (MCA) quantitatively as a predictor of acute ischemic stroke in patients without definitive infarct findings at cerebral parenchyma by non-contrast computed tomography (CT).
Clinical rationale for the study: The clinical rationale for the study is to evaluate if the measurement of Sylvian fissure dot sign (SDS) would help early management of patients with stroke at the emergency department.
Methods: Computed tomography scans of 101 patients admitted to the emergency department with stroke symptoms and/or signs were included in the study, retrospectively. In the patient group, the quantitative density of the segmental branches of the MCA in the Sylvian fissure was measured on the affected side and the contralateral side.
Results: Quantitative density of SDS was significantly higher on the ischemic side of the brain. Receiver operating characteristic (ROC) analysis showed a cut-off value of 38.5 Hounsfield units (HU) as a predictor for acute ischemic stroke, with a sensitivity and specificity of 79% and 92%, respectively.
Conclusion: Quantitative density of SDS on the affected side in patients without definitive cerebral infarct findings of parenchyma can be used in the emergency room as an objective predictor sign for the diagnosis of acute ischemic stroke. Considering this finding in the differential diagnosis of acute stroke patients in the emergency room has the potential to improve their clinical management, particularly for the patients without early parenchymal and vascular signs of stroke.
Mechanical thrombectomy (MT) has revolutionized the treatment of large-vessel occlusion stroke and markedly improved patient outcomes. Unfortunately, there remains a large proportion of patients that do not benefit from this technology. This review takes a look at recent and upcoming technologies that may help to increase the number of MT-treated patients, thereby improving their outcomes. To that end, an overview of digital health solutions, innovative pharmacological treatment, and futuristic robotic endovascular interventions is provided.